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Galois extensions

Exercise 11.1 (!). Consider a polynomial P (t) ∈ K[t] of degree n with coefficients in a field K
that has n distinct roots in K. Prove that the ring K[t]/P of residues modulo P is isomorphic to
the direct sum of n copies of K.

Hint. There was a similar problem in ALGEBRA 9.

Definition 11.1. Let K be an algebraic extension of a field k (this fact is often denoted in writing
by [K : k]). One says that [K : k] is a Galois extension if K ⊗k K is isomorphic (as an algebra)
to a direct sum of several copies of K.

Exercise 11.2. Let P (t) ∈ k[t] be an irreducible polynomial of degree n that has n distinct roots
in K = k[t]/P . Prove that [K : k] is a Galois extension.

Exercise 11.3. Prove that [Q[
√
−1 ] : Q] is a Galois extension.

Exercise 11.4. Let [k : Q] be an extension of degree 2 (i.e. K is two dimensianal as a vector space
over Q). Prove that it is a Galois extension.

Exercise 11.5 (!). Let p be a prime. Prove that for any root of unity ζ of degree p [Q[ζ] : Q] is a
Galois extension.

Exercise 11.6 (*). Is [Q[ 3
√

2] : Q] a Galois extension?

Exercise 11.7 (*). Consider F , a field of characteristic p and k = F (z), the field of rational
functions over F . Prove that the polynomial P (t) = tp − z is irreducible over k. Prove that
[k[t]/P : k] is not a Galois extension.

Exercise 11.8. Let K1 ⊃ K2 ⊃ K3 be a sequence of field extensions. Prove that

K2 ⊗K3 K1
∼= (K2 ⊗K3 K2)⊗K2 K1.

Exercise 11.9. Let K1 ⊃ K2 ⊃ K3 be a sequence of field extensions. Prove that

K1 ⊗K2 (K2 ⊗K3 K2)⊗K2 K1
∼= K1 ⊗K3 K1.

Exercise 11.11. Prove that Q[ 3
√

2,
√
−3−1
2

] is a Galois extension.

Exercise 11.12. Let K1 ⊃ K2 ⊃ K3 be a sequence of field extensions. Prove that the natural
map

K1 ⊗K3 K1 −→K1 ⊗K2 K1

is a surjective homomorphism of algebras.

Exercise 11.13 (!). Let K1 ⊃ K2 ⊃ K3 be a sequence of field extensions such that [K1 : K3] is a
Galois extension. Prove that [K1 : K2] is also a Galois extension.

Hint. Use the Problem 9.28 from ALGEBRA 9.
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Exercise 11.14. Let P ∈ k[t] be a polynomial of degree n over the field k. Let K1 = k; consider
the sequence of field extensions Kl ⊃ Kl−1 ⊃ · · · ⊃ K1 which is constructed as follows. Suppose
Kj is constructed. Decompose P into irreducible factors P =

∏
Pi in Kj. If all Pi are linear then

the construction is over. Otherwise, let P0 be an irreducible factor of P of degree > 1. Consider
Kj+1 = Kj[t]/P0. Prove that this process terminates in a finite number of steps and gives some
field K ⊃ k.

Definition 11.2. This field is called a splitting field of the polynomial P .

Exercise 11.15 (!). Let K be a splitting field of a polynomial P (t) ∈ k[t]. Prove that K is
isomorphic to a subfield of the algebraic closure k that is generated by all roots of P .

Exercise 11.16. Let P (t) be a polynomial of degree n. Prove that the degree of its splitting field
is not greater than n!.

Exercise 11.17. Let P ∈ k[t] be a polynomial of degree n that has n pairwise disjoint roots in the
algebraic closure k and let [K : k] be its splitting field and Kl ⊃ Kl−1 ⊃ · · · ⊃ K1 the corresponding
sequence of field extensions. Prove that K ⊗Ki−1

Ki is isomorphic to a direct sum of several copies
of K.

Hint. This follows immediately from Problem 11.1.

Exercise 11.18 (!). Let P (t) ∈ k[t] be an irreducible polynomial of degree n that has n pairwise
disjoint roots in the algebraic closure k (this polynomial is said to have no multiple roots) and
let K be its splitting field. Prove that [K : k] is a Galois extension.

Hint. Use the previous problem.

Exercise 11.19 (*). Let P (t) ∈ k[t] be an irreducible polynomial over a field k of characteristic
0. Prove that P has no multiple roots.

Hint. Prove that P (t) = tn + an−1t
n−1 + . . . doesn’t have multiple roots if and only if P has no

common factors with the polynomial

P ′(t) = ntn−1 + (n− 1)an−1t
n−2 + · · ·+ 2a2t+ a1.

In order to show this, prove that (PQ)′ = PQ′+Q′P and compute P ′(t) for P = (t−b1) . . . (t−bn).

Remark. It follows from the previous problem that over a field of characteristic 0 the splitting
field of any polynomial is a Galois extension.

Exercise 11.20 (*). Give an example of a field k (of non-zero characteristic) and an irreducible
polynomial P ∈ k[t] such that its splitting field is not a Galois extension.

Galois groups

Definition 11.3. Let [K : k] be a Galois extension. The Galois group [K : k] is the group of
k-linear automorphisms of the field K. We denote the Galois group by Gal([K : k]) or Autk(K).

In what follows we consider K ⊗k K as a K-algebra with the action of K∗ given by a formula
a(v1 ⊗ v2) = av1 ⊗ v2. This action of K∗ is called the left action. It is different than the “right
action” which is defined by the formula a(v1 ⊗ v2) = v1 ⊗ av2.
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Exercise 11.21. Let [K : k] be a Galois extension. Construct a bijection between the set of
K-linear homomorphisms K ⊗k K −→K and the set of indecomposable idempotents in K ⊗k K.

Exercise 11.22. Let µ : K⊗kK −→K be non-zeroK-linear homomorphism and k⊗kK ⊂ K⊗kK
be a k-subalgebra naturally isomorphic to K. Prove that µ |k⊗kK defines a k-linear automorphism
K −→K.

Exercise 11.23. Prove that every k-linear automorphism K can be obtained this way.

Hint. Let ν ∈ Gal([K : k]). Define a homomorphism K⊗kK → K as follows: v1⊗ v2 −→ v1ν(v2).

Exercise 11.24 (!). Let [K : k] be a Galois extension. Construct the natural bijection between
Gal([K : k]) and the set of indecomposable idempotents in K ⊗k K. Prove that the order of the
Galois group is the k-vector space dimension of K.

Exercise 11.25. Let [K : k] be a Galois extension, ν ∈ Gal([K : k]) be an element of the Galois
group and eν be the corresponding idempotent in K⊗kK. Let µl denote the standard (left) action
K∗ on K ⊗k K, and let µr denote the standard right action. Prove that µl(a)eν = µr(ν(a))eν .

Exercise 11.26. Let [K : k] be a Galois extension and a ∈ K be an element invariant under the
action of Gal([K : k]). Prove that a⊗ 1 = 1⊗ a in K ⊗k K.

Hint. Use the Problem 11.25.

Exercise 11.27 (!). Let [K : k] be a Galois extension and let a ∈ K be an element invariant
under the action of Gal([K : k]). Prove that a ∈ k.

Exercise 11.28. Let [K : k] be a Galois extension and let K ′ be an intermediate extension, K ⊃
K ′ ⊃ k. Prove that K ′ = KG′ where G′ ⊂ Gal([K : k]) is the group of K ′-linear automorphisms of
K and KG′ denotes the set of elements of K invariant under G′.

Hint. Prove that [K : K ′] is a Galois extension and use the previous problem.

Exercise 11.29 (!). Prove the Fundamental Theorem of Galois theory. Let [K : k] be a
Galois extension. Then G′ −→KG′ defines a bijective correspondence between the set of subgroups
G′ ⊂ Gal([K : k]) and the set of intermediate fields K ⊃ K ′ ⊃ k.

Exercise 11.30. Let [K : k] be a Galois extension and letK ′ be an intermediate field, K ⊃ K ′ ⊃ k.
Construct the natural correspondence between the set of k-linear homomorphisms K ′ → K and
the collection Gal([K : k])/Gal([K : K ′]) of cosets of Gal([K : K ′]) ⊂ Gal([K : k]) in the Galois
group Gal([K : k]) .

Exercise 11.31. Find the Galois group [Q[
√
a] : Q].

Exercise 11.32 (!). Let [K : k] be a Galois extension and let a be an element of the field K
generates K over k (this element is called primitive). Prove that if ν1, ν2, . . . , νn are pairwise
distinct elements of Gal([K : k]) then ν1(a), ν2(a), . . . νn(a) are linearly independent over k.

Exercise 11.33 (!). Let [K : k] be a Galois extension and let V ⊂ K be the union of all inter-
mediate fields k ⊂ K ′ ⊂ K which are proper subfields of K. Suppose that is infinite. Prove that
V 6= K.

3



ALGEBRA 11: Galois theory

Hint. V is the union of a finitely many k-subsspaces of K that have a dimension (over k) lower
than the dimension of K as a linear space over k. Prove that in this case V 6= K.

Remark. It follows that any Galois extension [K : k] of any infinite field k has a primitive element.

Exercise 11.34 (!). Let [K : k] be a Galois extension. Prove that for any a ∈ K the product
P (t) =

∏
νi∈Gal([K:k])(t− νi(a)) is a polynomial with coefficients in k.

Exercise 11.35 (*). In the previous problem setting, let a be primitive. Prove that P (t) is irre-
ducible.

Exercise 11.36 (!). Recall that the n-th root of unitiy is called primitive if it generates the group
of n-th roots of unity. Let ξ ∈ C be a primitive n-th root. Prove that the group Gal([Q[ξ] : Q]) is
isomorphic to the group Aut(Z/nZ) of automorphisms of the group Z/nZ. Find its order.

Exercise 11.37 (*). Consider an integer n. Let P (t) =
∏

(t− ξi) where the product is taken over
all primitive n-th roots of unity ξi. Prove that P (t) has rational coefficients and is irreducible over
Q.

Remark. This polynomial is called cyclotomic polynomial.

Exercise 11.38 (*). Find a decomposition of xn − 1 into factors irreducible over Q.

Exercise 11.39. Let a1, . . . , an ∈ Z be co-prime and non-square numbers. Prove that [Q[
√
a1,
√
a2, . . . ,

√
an] :

Q] is a Galois extension.

Exercise 11.40. Find the Galois group of this extension.

Exercise 11.41 (!). Prove that
√
a1,
√
a2, . . . ,

√
an are linearly independent over Q.

Finite fields

We know the following facts about finite fields from the previous problem sheets. The order of
a finite fied is pn where p is its characteristic. For any field k of characteristic p there exists the
Frobenius endomorphism, Fr : k −→ k, x 7→ xp. The finite field of Fp naturally embeds into
any field of characteristic field p.

We denote the field of order pn by Fpn .

Exercise 11.42. Let x ∈ Fpn , x 6= 0. Prove that xp
n−1 = 1.

Hint. Use Lagrange’s theorem (the order of an element divides the number of elements in the
group).

Remark. It follows that the polynomial P (t) = tp
n−1 − 1 has exactly pn − 1 roots in Fpn .

Exercise 11.43 (!). Prove that
∏

ξ∈Fpn\0 = tp
n−1 − 1.

Exercise 11.44 (!). Prove that [Fpn : Fp] is a Galois extension.

Exercise 11.45 (!). Prove that Fr, Fr2, . . . , F rn−1 are pairwise distinct automorphisms of Fpn .

Exercise 11.46 (!). Prove that Gal([Fpn : Fp]) is a cyclic group of order n.
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Exercise 11.47 (*). Prove that the splitting field of the polynomial tp
n−1 − 1 over Fp has order

pn.

Exercise 11.48 (*). Prove that the field of order pn is unique up to isomorphism.

Exercise 11.49 (!). Find all subfields of Fpn .

Exercise 11.50 (!). Let [K : k] be a Galois extension. Prove that K has a primitive element.

Remark. We have already proved this for infinite fields, see the remark after the Problem 11.33.

Abel’s theorem

Abel’s theorem states that a generic polynomial of degree 5 is not solvable by radicals; in other
words, the solution of a generic equation of degree 5 cannot be expressed using algebraic operations
(multiplication, addition, division) and taking an n-th root. In this section we will give an example
of an equation that is not solvable by radicals.

Exercise 11.51. Let [K : k] be a Galois extension. Prove that the subgroup G′ ⊂ Gal([K : k]) is
normal if and only if [KG′ : k] is a Galois extension.

Exercise 11.52 (!). Let G′ ⊂ Gal([K : k]) be a normal subgroup. Prove that the group Gal([KG′ :
k]) is isomorphic to the quotient Gal([K : k])/G′.

Definition 11.4. A Galois extension [K : k] is called cyclic, if its Galois group is cyclic.

Exercise 11.53 (!). Let Galois group of an extension [K : k] be solvable. Prove that [K : k] can
be broken into a sequence of Galois extensions k = K0 ⊂ K1 ⊂ ... ⊂ Kn = K so that for any i,
Gal([Ki : Ki−1]) is a cyclic group.

Exercise 11.54 (*). Let k contain all n-th roots of unity and [K : k] be a splitting field of the
polynomial tn − a which does not have roots over k. Prove that this extension is cyclic.

Hint. Let α be some root of the polynomial tn − a. Then all roots of tn − a are of the form
α, αξ, αξ2, . . . , αξp−1, where ξ is a root of unity. Prove that the automorphism that maps α to αξi,
also maps αξq to αξq+i.

Exercise 11.55 (*). Take n ∈ N. Let for any k > 1 dividing n, a ∈ Q does not equal k-th power
of any rational number, and [K : Q] be the splitting field of the polynomial tn − a. Prove that
K contains all n-th roots of unity and that Gal([K : Q]) is isomorphic to a semi-direct product
Z/nZ o Aut(Z/nZ).

Exercise 11.56 (*). Let k be a field of characteristic 0, and let [K : k] be a splitting field of the
polynomial tn − a. Prove that the Galois group Gal([K : k]) is solvable.

Hint. If k contains the n-th roots of unity then there is nothing to prove. Suppose not, then prove
that K contains the n-th roots. Consider an intermediate extension K ′ generated by these roots
over k and prove that [K : K ′] and [K ′ : k] are Galois extensios with Abelian Galois groups.
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Exercise 11.57. Let [K : k] be a cyclic extension of order n, and let ν be a primitive element of
the group Gal[K : k], ξ ∈ k be the primitive roots of unity of degree n, and α ∈ K is a primitive
element of the extension. Consider the Lagrange’s resolvent

L = a+ ξ−1ν(a) + ξ−2ν2(a) + · · ·+ ξ−n+1νn−1(a)

Prove that ν(L) = ξL. Prove that L 6= 0.

Exercise 11.58 (*). Prove that
∏n−1

i=0 (t− νi(L)) = tn−Ln. Prove that L generates K over k and
that Ln ∈ k.

Hint. To see that L generates K over k, use the fact that Gal[k[ n
√
Ln], k] = Z/nZ, and therefore

the dimension of k[L] over k is the same as dimension of K over k.

Exercise 11.59 (*). Let [K : k] be a Galois extension of order n, and let k contain all the n-th
roots of unity. Prove that [K : k] is cyclic if and only if it is generated by an n-th root of a ∈ k.

Exercise 11.60 (*). (Galois theorem) Deduce the following theorem. A Galois extension [K : k]
is obtained by successive addition of solutions of equations of the form tn − a if and only if the
group Gal[K : k] is solvable.

Remark. Let P (t) ∈ k[t] be a polynomial. The Galois group of P is defined to be the Galois
group its splitting field. Galois theorem states that P (t) = 0 is solvable by radicals if and only if
the Galois group of P (t) is solvable.

Definition 11.5. Let group G act on a set Σ. The action is called transitive if any x ∈ Σ can
be mapped to any y ∈ Σ by an action of some g ∈ G.

Exercise 11.61. Let G ⊂ Sn be a subgroup that contains a transposition and that acts transitively
on {1, 2, 3, . . . , n}. Prove that G = Sn.

Exercise 11.62. Let P ∈ k[t] be an irreducible polynomial, and let ξ1, . . . , ξn be its roots and let
all these roots be distinct. Prove that the Galois group of P acts on {ξ1, . . . , ξn} transitively.

Hint. Consider a decomposition of {ξ1, . . . , ξn} into equivalence classes under the action of Gal(P ).
Let S be one of these equivalence classes. Prove that the polynomial

∏
ξi∈S(t− ξi) has coefficients

in k and divides P .

Exercise 11.63 (!). Let P ∈ Q[t] be an irreducible polynomial of degree n that has exactly n− 2
real roots. Prove that its Galois group is Sn.

Hint. Prove that Gal(P ) acts transitively on the roots of P , and that the complex conjugation
preserves the splitting field of P and acts on the set of roots as a transposition.

Exercise 11.64 (!). (Eisenstein theorem) Let Q = tn + tn−1an−1 + tn−2an−2 + · · ·+ a0 be a poly-

nomial with integer coefficients such that all ai divide a given prime numeber p, and a0 6
...p2. Prove

that Q is irreducible over Q.

Exercise 11.65 (*). Prove that Q(t) = x5 − 10x+ 5 is an irreducible (over Q) polynomial which
has exactly 3 real roots. Deduce that its Galois group is S5.

Exercise 11.66 (*). Prove that the equation x5 − 10x+ 5 = 0 is not solvable by radical.
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