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Galois extensions

Exercise 11.1 (!). Consider a polynomial P(t) € K[t] of degree n with coefficients in a field K
that has n distinct roots in K. Prove that the ring K[t]/P of residues modulo P is isomorphic to
the direct sum of n copies of K.

Hint. There was a similar problem in ALGEBRA 9.

Definition 11.1. Let K be an algebraic extension of a field & (this fact is often denoted in writing
by [K : k]). One says that [K : k] is a Galois extension if K ®; K is isomorphic (as an algebra)
to a direct sum of several copies of K.

Exercise 11.2. Let P(t) € k[t] be an irreducible polynomial of degree n that has n distinct roots
in K = k[t]/P. Prove that [K : k] is a Galois extension.

Exercise 11.3. Prove that [Q[v/—1]: Q] is a Galois extension.

Exercise 11.4. Let [k : Q] be an extension of degree 2 (i.e. K is two dimensianal as a vector space
over Q). Prove that it is a Galois extension.

Exercise 11.5 (!). Let p be a prime. Prove that for any root of unity ¢ of degree p [Q[(] : Q] is a
Galois extension.

Exercise 11.6 (*). Is [Q[v/2] : Q] a Galois extension?

Exercise 11.7 (*). Consider F, a field of characteristic p and k = F(z), the field of rational
functions over F. Prove that the polynomial P(t) = t” — z is irreducible over k. Prove that
[k[t]/ P : k] is not a Galois extension.

Exercise 11.8. Let K; D K5 D K3 be a sequence of field extensions. Prove that
K ®p, K1 = (K ®k, K>) @k, K.
Exercise 11.9. Let K; D K3 D K3 be a sequence of field extensions. Prove that
K ®k, (K g, K3) @k, K1 = K @k, K.
Exercise 11.11. Prove that Q[v/2, @] is a Galois extension.

Exercise 11.12. Let K1 D Ky D K3 be a sequence of field extensions. Prove that the natural
map
Ky ®k, K1 — Ky ®k, K

is a surjective homomorphism of algebras.

Exercise 11.13 (!). Let K; D Ky D K3 be a sequence of field extensions such that [K; : K3] is a
Galois extension. Prove that [K; : K5] is also a Galois extension.

Hint. Use the Problem 9.28 from ALGEBRA 9.
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Exercise 11.14. Let P € k[t] be a polynomial of degree n over the field k. Let K; = k; consider
the sequence of field extensions K; D K;_1 D --- D K which is constructed as follows. Suppose
K is constructed. Decompose P into irreducible factors P = [[ P; in K. If all P, are linear then
the construction is over. Otherwise, let ;) be an irreducible factor of P of degree > 1. Consider

K1 = K;[t]/Py. Prove that this process terminates in a finite number of steps and gives some
field K D k.

Definition 11.2. This field is called a splitting field of the polynomial P.

Exercise 11.15 (!). Let K be a splitting field of a polynomial P(t) € k[t]. Prove that K is
isomorphic to a subfield of the algebraic closure k£ that is generated by all roots of P.

Exercise 11.16. Let P(t) be a polynomial of degree n. Prove that the degree of its splitting field
is not greater than n!.

Exercise 11.17. Let P € k[t] be a polynomial of degree n that has n pairwise disjoint roots in the
algebraic closure k and let [K : k| be its splitting field and K; D K;—1 D - -+ D K the corresponding

sequence of field extensions. Prove that K ®p, , K; is isomorphic to a direct sum of several copies
of K.

Hint. This follows immediately from Problem 11.1.

Exercise 11.18 (!). Let P(t) € k[t] be an irreducible polynomial of degree n that has n pairwise
disjoint roots in the algebraic closure k (this polynomial is said to have no multiple roots) and
let K be its splitting field. Prove that [K : k| is a Galois extension.

Hint. Use the previous problem.

Exercise 11.19 (*). Let P(t) € k[t] be an irreducible polynomial over a field k of characteristic
0. Prove that P has no multiple roots.

Hint. Prove that P(t) = t" + a,_1t"! + ... doesn’t have multiple roots if and only if P has no
common factors with the polynomial

Pt)=nt"""+ (n— 1ap_1t" >+ + 2ast + ay.
In order to show this, prove that (PQ)" = PQ'+ QP and compute P'(t) for P = (t —by)...(t—by,).

Remark. It follows from the previous problem that over a field of characteristic 0 the splitting
field of any polynomial is a Galois extension.

Exercise 11.20 (*). Give an example of a field k (of non-zero characteristic) and an irreducible
polynomial P € k[t] such that its splitting field is not a Galois extension.

Galois groups

Definition 11.3. Let [K : k| be a Galois extension. The Galois group [K : k] is the group of
k-linear automorphisms of the field K. We denote the Galois group by Gal([K : k]) or Autg(K).

In what follows we consider K ®; K as a K-algebra with the action of K* given by a formula
a(v; ® v9) = avy ® vy. This action of K* is called the left action. It is different than the “right
action” which is defined by the formula a(v; ® v9) = v1 ® avs.
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Exercise 11.21. Let [K : k| be a Galois extension. Construct a bijection between the set of
K-linear homomorphisms K ®; K — K and the set of indecomposable idempotents in K ®,; K.

Exercise 11.22. Let p: K®pK — K benon-zero K-linear homomorphism and k@, K C K® K
be a k-subalgebra naturally isomorphic to K. Prove that p |xg, x defines a k-linear automorphism
K— K.

Exercise 11.23. Prove that every k-linear automorphism K can be obtained this way.
Hint. Let v € Gal([K : k]). Define a homomorphism K ®; K — K as follows: v; ® vg — v1v(vs).

Exercise 11.24 (!). Let [K : k] be a Galois extension. Construct the natural bijection between
Gal([K : k]) and the set of indecomposable idempotents in K ®; K. Prove that the order of the
Galois group is the k-vector space dimension of K.

Exercise 11.25. Let [K : k] be a Galois extension, v € Gal([K : k]) be an element of the Galois
group and e, be the corresponding idempotent in K ®; K. Let y; denote the standard (left) action
K* on K ® K, and let p, denote the standard right action. Prove that p;(a)e, = p-(v(a))e,.

Exercise 11.26. Let [K : k| be a Galois extension and a € K be an element invariant under the
action of Gal([K : k]). Prove that c® 1 =1® a in K ®; K.

Hint. Use the Problem 11.25.

Exercise 11.27 (!). Let [K : k] be a Galois extension and let a € K be an element invariant
under the action of Gal(|K : k]). Prove that a € k.

Exercise 11.28. Let [K : k] be a Galois extension and let K’ be an intermediate extension, K D
K' D k. Prove that K’ = K& where G’ C Gal([K : k]) is the group of K’-linear automorphisms of
K and K¢ denotes the set of elements of K invariant under G

Hint. Prove that [K : K'] is a Galois extension and use the previous problem.

Exercise 11.29 (!). Prove the Fundamental Theorem of Galois theory. Let [K : k] be a
Galois extension. Then G’ — K" defines a bijective correspondence between the set of subgroups
G’ C Gal([K : k]) and the set of intermediate fields K D K’ D k.

Exercise 11.30. Let [K : k] be a Galois extension and let K’ be an intermediate field, K D K’ D k.
Construct the natural correspondence between the set of k-linear homomorphisms K’ — K and
the collection Gal([K : k])/ Gal([K : K']) of cosets of Gal([K : K']) C Gal([K : k]) in the Galois
group Gal([K : k]) .

Exercise 11.31. Find the Galois group [Q[y/a] : Q).

Exercise 11.32 (!). Let [K : k] be a Galois extension and let @ be an element of the field K
generates K over k (this element is called primitive). Prove that if vy,15,..., 1, are pairwise
distinct elements of Gal([K : k]) then v4(a), va(a), ... v,(a) are linearly independent over k.

Exercise 11.33 (!). Let [K : k] be a Galois extension and let V' C K be the union of all inter-
mediate fields k¥ C K’ C K which are proper subfields of K. Suppose that is infinite. Prove that
V#K.
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Hint. V is the union of a finitely many k-subsspaces of K that have a dimension (over k) lower
than the dimension of K as a linear space over k. Prove that in this case V # K.

Remark. It follows that any Galois extension [K : k] of any infinite field £ has a primitive element.

Exercise 11.34 (!). Let [K : k] be a Galois extension. Prove that for any a € K the product
P(t) =1L, ccamn)(t — vi(a)) is a polynomial with coefficients in k.

Exercise 11.35 (*). In the previous problem setting, let a be primitive. Prove that P(t) is irre-
ducible.

Exercise 11.36 (!). Recall that the n-th root of unitiy is called primitive if it generates the group
of n-th roots of unity. Let £ € C be a primitive n-th root. Prove that the group Gal(|Q[¢] : Q]) is
isomorphic to the group Aut(Z/nZ) of automorphisms of the group Z/nZ. Find its order.

Exercise 11.37 (*). Consider an integer n. Let P(t) = [[(t —&;) where the product is taken over
all primitive n-th roots of unity &;. Prove that P(t) has rational coefficients and is irreducible over

Q.
Remark. This polynomial is called cyclotomic polynomial.

Exercise 11.38 (*). Find a decomposition of ™ — 1 into factors irreducible over Q.

Exercise 11.39. Let ay,...,a, € Z be co-prime and non-square numbers. Prove that [Q[/a1, \/az, . . .

Q] is a Galois extension.
Exercise 11.40. Find the Galois group of this extension.

Exercise 11.41 (!). Prove that \/ai, /as, ..., /a, are linearly independent over Q.

Finite fields

We know the following facts about finite fields from the previous problem sheets. The order of
a finite fied is p™ where p is its characteristic. For any field k of characteristic p there exists the
Frobenius endomorphism, F'r : kK — k, x — xP. The finite field of F, naturally embeds into

any field of characteristic field p.
We denote the field of order p" by Fn.

Exercise 11.42. Let z € Fyn,  # 0. Prove that 27"~ = 1,

Hint. Use Lagrange’s theorem (the order of an element divides the number of elements in the
group).

Remark. It follows that the polynomial P(t) = t*"~! — 1 has exactly p" — 1 roots in Fn.
Exercise 11.43 (!). Prove that [].cp o = 1.
Exercise 11.44 (!). Prove that [F,. : F,] is a Galois extension.

Exercise 11.45 (!). Prove that Fr, Fr? ..., Fr"™! are pairwise distinct automorphisms of Fyn.

Exercise 11.46 (!). Prove that Gal([F, : F,]) is a cyclic group of order n.
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Exercise 11.47 (*). Prove that the splitting field of the polynomial #"~! — 1 over F, has order

Y2

.
Exercise 11.48 (*). Prove that the field of order p™ is unique up to isomorphism.

Exercise 11.49 (!). Find all subfields of F».

Exercise 11.50 (!). Let [K : k] be a Galois extension. Prove that K has a primitive element.

Remark. We have already proved this for infinite fields, see the remark after the Problem 11.33.

Abel’s theorem

Abel’s theorem states that a generic polynomial of degree 5 is not solvable by radicals; in other
words, the solution of a generic equation of degree 5 cannot be expressed using algebraic operations
(multiplication, addition, division) and taking an n-th root. In this section we will give an example
of an equation that is not solvable by radicals.

Exercise 11.51. Let [K : k] be a Galois extension. Prove that the subgroup G’ C Gal([K : k]) is
normal if and only if [K%" : k] is a Galois extension.

Exercise 11.52 (!). Let G’ C Gal([K : k]) be a normal subgroup. Prove that the group Gal([K¢" :
k]) is isomorphic to the quotient Gal([K : k])/G".

Definition 11.4. A Galois extension [K : k] is called cyclic, if its Galois group is cyclic.

Exercise 11.53 (!). Let Galois group of an extension [K : k| be solvable. Prove that [K : k| can
be broken into a sequence of Galois extensions k = Ky C K; C ... C K,, = K so that for any ¢,
Gal(|K; : K;_1]) is a cyclic group.

Exercise 11.54 (*). Let k contain all n-th roots of unity and [K : k] be a splitting field of the
polynomial ¢ — a which does not have roots over k. Prove that this extension is cyclic.

Hint. Let o be some root of the polynomial " — a. Then all roots of t" — a are of the form
a,af,af?, ..., afP~t where ¢ is a root of unity. Prove that the automorphism that maps a to g,
also maps a€? to a4,

Exercise 11.55 (*). Take n € N. Let for any k£ > 1 dividing n, a € Q does not equal k-th power
of any rational number, and [K : Q] be the splitting field of the polynomial " — a. Prove that
K contains all n-th roots of unity and that Gal([K : Q]) is isomorphic to a semi-direct product
Z/nZ x Aut(Z/nZ).

Exercise 11.56 (*). Let k be a field of characteristic 0, and let [K : k] be a splitting field of the
polynomial ¢" — a. Prove that the Galois group Gal([K : k]) is solvable.

Hint. If k& contains the n-th roots of unity then there is nothing to prove. Suppose not, then prove
that K contains the n-th roots. Consider an intermediate extension K’ generated by these roots
over k and prove that [K : K'| and [K’ : k] are Galois extensios with Abelian Galois groups.



ALGEBRA 11: Galois theory

Exercise 11.57. Let [K : k| be a cyclic extension of order n, and let v be a primitive element of
the group Gal[K : k|, £ € k be the primitive roots of unity of degree n, and o € K is a primitive
element of the extension. Consider the Lagrange’s resolvent

L=a+¢(a)+ 2% a) + -+ Ha)
Prove that v(L) = £L. Prove that L # 0.

Exercise 11.58 (*). Prove that [[/, (t — /(L)) = " — L". Prove that L generates K over k and
that L" € k.

Hint. To see that L generates K over k, use the fact that Gal[k[V/L"|, k| = Z/nZ, and therefore
the dimension of k[L] over k is the same as dimension of K over k.

Exercise 11.59 (*). Let [K : k| be a Galois extension of order n, and let k contain all the n-th
roots of unity. Prove that [K : k] is cyclic if and only if it is generated by an n-th root of a € k.

Exercise 11.60 (*). (Galois theorem) Deduce the following theorem. A Galois extension [K : k]
is obtained by successive addition of solutions of equations of the form ¢" — a if and only if the
group Gal[K : k] is solvable.

Remark. Let P(t) € k[t] be a polynomial. The Galois group of P is defined to be the Galois
group its splitting field. Galois theorem states that P(t) = 0 is solvable by radicals if and only if
the Galois group of P(t) is solvable.

Definition 11.5. Let group G act on a set X. The action is called transitive if any x € ¥ can
be mapped to any y € X by an action of some g € G.

Exercise 11.61. Let G C S, be a subgroup that contains a transposition and that acts transitively
on {1,2,3,...,n}. Prove that G = 5,.

Exercise 11.62. Let P € k[t] be an irreducible polynomial, and let &3, ..., &, be its roots and let
all these roots be distinct. Prove that the Galois group of P acts on {&1,...,&,} transitively.

Hint. Consider a decomposition of {{i, ..., &, } into equivalence classes under the action of Gal(P).
Let S be one of these equivalence classes. Prove that the polynomial Héi cs(t = &) has coefficients
in k and divides P.

Exercise 11.63 (!). Let P € QJt] be an irreducible polynomial of degree n that has exactly n — 2
real roots. Prove that its Galois group is .5,,.

Hint. Prove that Gal(P) acts transitively on the roots of P, and that the complex conjugation
preserves the splitting field of P and acts on the set of roots as a transposition.

Exercise 11.64 (!). (Eisenstein theorem) Let Q = ¢" +t" 'a,_1 +t" ?a,_5 + - - - + ag be a poly-

nomial with integer coefficients such that all a; divide a given prime numeber p, and ay /p?. Prove
that @ is irreducible over Q.

Exercise 11.65 (*). Prove that Q(t) = x° — 10z + 5 is an irreducible (over Q) polynomial which
has exactly 3 real roots. Deduce that its Galois group is Ss.

Exercise 11.66 (*). Prove that the equation z° — 10z + 5 = 0 is not solvable by radical.



