ALGEBRA 11: Galois theory

Galois extensions

Exercise 11.1 (!). Consider a polynomial $P(t) \in K[t]$ of degree n with coefficients in a field K that has n distinct roots in K. Prove that the ring K[t]/P of residues modulo P is isomorphic to the direct sum of n copies of K.

Hint. There was a similar problem in ALGEBRA 9.

Definition 11.1. Let K be an algebraic extension of a field k (this fact is often denoted in writing by [K:k]). One says that [K:k] is a **Galois extension** if $K \otimes_k K$ is isomorphic (as an algebra) to a direct sum of several copies of K.

Exercise 11.2. Let $P(t) \in k[t]$ be an irreducible polynomial of degree *n* that has *n* distinct roots in K = k[t]/P. Prove that [K:k] is a Galois extension.

Exercise 11.3. Prove that $[\mathbb{Q}[\sqrt{-1}] : \mathbb{Q}]$ is a Galois extension.

Exercise 11.4. Let $[k : \mathbb{Q}]$ be an extension of degree 2 (i.e. K is two dimensional as a vector space over \mathbb{Q}). Prove that it is a Galois extension.

Exercise 11.5 (!). Let p be a prime. Prove that for any root of unity ζ of degree p [$\mathbb{Q}[\zeta] : \mathbb{Q}$] is a Galois extension.

Exercise 11.6 (*). Is $[\mathbb{Q}[\sqrt[3]{2}] : \mathbb{Q}]$ a Galois extension?

Exercise 11.7 (*). Consider F, a field of characteristic p and k = F(z), the field of rational functions over F. Prove that the polynomial $P(t) = t^p - z$ is irreducible over k. Prove that [k[t]/P:k] is not a Galois extension.

Exercise 11.8. Let $K_1 \supset K_2 \supset K_3$ be a sequence of field extensions. Prove that

$$K_2 \otimes_{K_3} K_1 \cong (K_2 \otimes_{K_3} K_2) \otimes_{K_2} K_1.$$

Exercise 11.9. Let $K_1 \supset K_2 \supset K_3$ be a sequence of field extensions. Prove that

$$K_1 \otimes_{K_2} (K_2 \otimes_{K_3} K_2) \otimes_{K_2} K_1 \cong K_1 \otimes_{K_3} K_1.$$

Exercise 11.11. Prove that $\mathbb{Q}[\sqrt[3]{2}, \frac{\sqrt{-3}-1}{2}]$ is a Galois extension.

Exercise 11.12. Let $K_1 \supset K_2 \supset K_3$ be a sequence of field extensions. Prove that the natural map

$$K_1 \otimes_{K_3} K_1 \longrightarrow K_1 \otimes_{K_2} K_1$$

is a surjective homomorphism of algebras.

Exercise 11.13 (!). Let $K_1 \supset K_2 \supset K_3$ be a sequence of field extensions such that $[K_1 : K_3]$ is a Galois extension. Prove that $[K_1 : K_2]$ is also a Galois extension.

Hint. Use the Problem 9.28 from ALGEBRA 9.

Exercise 11.14. Let $P \in k[t]$ be a polynomial of degree n over the field k. Let $K_1 = k$; consider the sequence of field extensions $K_l \supset K_{l-1} \supset \cdots \supset K_1$ which is constructed as follows. Suppose K_j is constructed. Decompose P into irreducible factors $P = \prod P_i$ in K_j . If all P_i are linear then the construction is over. Otherwise, let P_0 be an irreducible factor of P of degree > 1. Consider $K_{j+1} = K_j[t]/P_0$. Prove that this process terminates in a finite number of steps and gives some field $K \supset k$.

Definition 11.2. This field is called a **splitting field** of the polynomial *P*.

Exercise 11.15 (!). Let K be a splitting field of a polynomial $P(t) \in k[t]$. Prove that K is isomorphic to a subfield of the algebraic closure \overline{k} that is generated by all roots of P.

Exercise 11.16. Let P(t) be a polynomial of degree n. Prove that the degree of its splitting field is not greater than n!.

Exercise 11.17. Let $P \in k[t]$ be a polynomial of degree n that has n pairwise disjoint roots in the algebraic closure k and let [K : k] be its splitting field and $K_l \supset K_{l-1} \supset \cdots \supset K_1$ the corresponding sequence of field extensions. Prove that $K \otimes_{K_{i-1}} K_i$ is isomorphic to a direct sum of several copies of K.

Hint. This follows immediately from Problem 11.1.

Exercise 11.18 (!). Let $P(t) \in k[t]$ be an irreducible polynomial of degree n that has n pairwise disjoint roots in the algebraic closure k (this polynomial is said to have **no multiple roots**) and let K be its splitting field. Prove that [K : k] is a Galois extension.

Hint. Use the previous problem.

Exercise 11.19 (*). Let $P(t) \in k[t]$ be an irreducible polynomial over a field k of characteristic 0. Prove that P has no multiple roots.

Hint. Prove that $P(t) = t^n + a_{n-1}t^{n-1} + \dots$ doesn't have multiple roots if and only if P has no common factors with the polynomial

$$P'(t) = nt^{n-1} + (n-1)a_{n-1}t^{n-2} + \dots + 2a_2t + a_1.$$

In order to show this, prove that (PQ)' = PQ' + Q'P and compute P'(t) for $P = (t - b_1) \dots (t - b_n)$.

Remark. It follows from the previous problem that over a field of characteristic 0 the splitting field of any polynomial is a Galois extension.

Exercise 11.20 (*). Give an example of a field k (of non-zero characteristic) and an irreducible polynomial $P \in k[t]$ such that its splitting field is not a Galois extension.

Galois groups

Definition 11.3. Let [K : k] be a Galois extension. The **Galois group** [K : k] is the group of k-linear automorphisms of the field K. We denote the Galois group by Gal([K : k]) or $Aut_k(K)$.

In what follows we consider $K \otimes_k K$ as a K-algebra with the action of K^* given by a formula $a(v_1 \otimes v_2) = av_1 \otimes v_2$. This action of K^* is called the **left** action. It is different than the "right action" which is defined by the formula $a(v_1 \otimes v_2) = v_1 \otimes av_2$.

Exercise 11.21. Let [K : k] be a Galois extension. Construct a bijection between the set of K-linear homomorphisms $K \otimes_k K \longrightarrow K$ and the set of indecomposable idempotents in $K \otimes_k K$.

Exercise 11.22. Let $\mu : K \otimes_k K \longrightarrow K$ be non-zero K-linear homomorphism and $k \otimes_k K \subset K \otimes_k K$ be a k-subalgebra naturally isomorphic to K. Prove that $\mu \mid_{k \otimes_k K}$ defines a k-linear automorphism $K \longrightarrow K$.

Exercise 11.23. Prove that every k-linear automorphism K can be obtained this way.

Hint. Let $\nu \in \text{Gal}([K:k])$. Define a homomorphism $K \otimes_k K \to K$ as follows: $v_1 \otimes v_2 \longrightarrow v_1 \nu(v_2)$.

Exercise 11.24 (!). Let [K : k] be a Galois extension. Construct the natural bijection between Gal([K : k]) and the set of indecomposable idempotents in $K \otimes_k K$. Prove that the order of the Galois group is the k-vector space dimension of K.

Exercise 11.25. Let [K : k] be a Galois extension, $\nu \in \text{Gal}([K : k])$ be an element of the Galois group and e_{ν} be the corresponding idempotent in $K \otimes_k K$. Let μ_l denote the standard (left) action K^* on $K \otimes_k K$, and let μ_r denote the standard right action. Prove that $\mu_l(a)e_{\nu} = \mu_r(\nu(a))e_{\nu}$.

Exercise 11.26. Let [K : k] be a Galois extension and $a \in K$ be an element invariant under the action of Gal([K : k]). Prove that $a \otimes 1 = 1 \otimes a$ in $K \otimes_k K$.

Hint. Use the Problem 11.25.

Exercise 11.27 (!). Let [K : k] be a Galois extension and let $a \in K$ be an element invariant under the action of Gal([K : k]). Prove that $a \in k$.

Exercise 11.28. Let [K : k] be a Galois extension and let K' be an intermediate extension, $K \supset K' \supset k$. Prove that $K' = K^{G'}$ where $G' \subset \text{Gal}([K : k])$ is the group of K'-linear automorphisms of K and $K^{G'}$ denotes the set of elements of K invariant under G'.

Hint. Prove that [K:K'] is a Galois extension and use the previous problem.

Exercise 11.29 (!). Prove the **Fundamental Theorem of Galois theory**. Let [K : k] be a Galois extension. Then $G' \longrightarrow K^{G'}$ defines a bijective correspondence between the set of subgroups $G' \subset \text{Gal}([K : k])$ and the set of intermediate fields $K \supset K' \supset k$.

Exercise 11.30. Let [K : k] be a Galois extension and let K' be an intermediate field, $K \supset K' \supset k$. Construct the natural correspondence between the set of k-linear homomorphisms $K' \rightarrow K$ and the collection $\operatorname{Gal}([K : k])/\operatorname{Gal}([K : K'])$ of cosets of $\operatorname{Gal}([K : K']) \subset \operatorname{Gal}([K : k])$ in the Galois group $\operatorname{Gal}([K : k])$.

Exercise 11.31. Find the Galois group $[\mathbb{Q}[\sqrt{a}] : \mathbb{Q}]$.

Exercise 11.32 (!). Let [K : k] be a Galois extension and let a be an element of the field K generates K over k (this element is called **primitive**). Prove that if $\nu_1, \nu_2, \ldots, \nu_n$ are pairwise distinct elements of Gal([K : k]) then $\nu_1(a), \nu_2(a), \ldots, \nu_n(a)$ are linearly independent over k.

Exercise 11.33 (!). Let [K : k] be a Galois extension and let $V \subset K$ be the union of all intermediate fields $k \subset K' \subset K$ which are proper subfields of K. Suppose that is infinite. Prove that $V \neq K$.

Hint. V is the union of a finitely many k-subspaces of K that have a dimension (over k) lower than the dimension of K as a linear space over k. Prove that in this case $V \neq K$.

Remark. It follows that any Galois extension [K : k] of any infinite field k has a primitive element.

Exercise 11.34 (!). Let [K : k] be a Galois extension. Prove that for any $a \in K$ the product $P(t) = \prod_{\nu_i \in \text{Gal}([K:k])} (t - \nu_i(a))$ is a polynomial with coefficients in k.

Exercise 11.35 (*). In the previous problem setting, let a be primitive. Prove that P(t) is irreducible.

Exercise 11.36 (!). Recall that the *n*-th root of unity is called **primitive** if it generates the group of *n*-th roots of unity. Let $\xi \in \mathbb{C}$ be a primitive *n*-th root. Prove that the group $\operatorname{Gal}([\mathbb{Q}[\xi] : \mathbb{Q}])$ is isomorphic to the group $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ of automorphisms of the group $\mathbb{Z}/n\mathbb{Z}$. Find its order.

Exercise 11.37 (*). Consider an integer *n*. Let $P(t) = \prod (t - \xi_i)$ where the product is taken over all primitive *n*-th roots of unity ξ_i . Prove that P(t) has rational coefficients and is irreducible over \mathbb{Q} .

Remark. This polynomial is called cyclotomic polynomial.

Exercise 11.38 (*). Find a decomposition of $x^n - 1$ into factors irreducible over \mathbb{Q} .

Exercise 11.39. Let $a_1, \ldots, a_n \in \mathbb{Z}$ be co-prime and non-square numbers. Prove that $[\mathbb{Q}[\sqrt{a_1}, \sqrt{a_2}, \ldots, \sqrt{a_n}]$ is a Galois extension.

Exercise 11.40. Find the Galois group of this extension.

Exercise 11.41 (!). Prove that $\sqrt{a_1}, \sqrt{a_2}, \ldots, \sqrt{a_n}$ are linearly independent over \mathbb{Q} .

Finite fields

We know the following facts about finite fields from the previous problem sheets. The order of a finite field is p^n where p is its characteristic. For any field k of characteristic p there exists the **Frobenius endomorphism**, $Fr: k \longrightarrow k, x \mapsto x^p$. The finite field of \mathbb{F}_p naturally embeds into any field of characteristic field p.

We denote the field of order p^n by \mathbb{F}_{p^n} .

Exercise 11.42. Let $x \in \mathbb{F}_{p^n}$, $x \neq 0$. Prove that $x^{p^n-1} = 1$.

Hint. Use Lagrange's theorem (the order of an element divides the number of elements in the group).

Remark. It follows that the polynomial $P(t) = t^{p^n-1} - 1$ has exactly $p^n - 1$ roots in \mathbb{F}_{p^n} .

Exercise 11.43 (!). Prove that $\prod_{\xi \in \mathbb{F}_{p^n} \setminus 0} = t^{p^n-1} - 1$.

Exercise 11.44 (!). Prove that $[\mathbb{F}_{p^n} : \mathbb{F}_p]$ is a Galois extension.

Exercise 11.45 (!). Prove that $Fr, Fr^2, \ldots, Fr^{n-1}$ are pairwise distinct automorphisms of \mathbb{F}_{p^n} .

Exercise 11.46 (!). Prove that $\operatorname{Gal}([\mathbb{F}_{p^n} : \mathbb{F}_p])$ is a cyclic group of order n.

Exercise 11.47 (*). Prove that the splitting field of the polynomial $t^{p^n-1} - 1$ over \mathbb{F}_p has order p^n .

Exercise 11.48 (*). Prove that the field of order p^n is unique up to isomorphism.

Exercise 11.49 (!). Find all subfields of \mathbb{F}_{p^n} .

Exercise 11.50 (!). Let [K:k] be a Galois extension. Prove that K has a primitive element.

Remark. We have already proved this for infinite fields, see the remark after the Problem 11.33.

Abel's theorem

Abel's theorem states that a generic polynomial of degree 5 is not solvable by radicals; in other words, the solution of a generic equation of degree 5 cannot be expressed using algebraic operations (multiplication, addition, division) and taking an n-th root. In this section we will give an example of an equation that is not solvable by radicals.

Exercise 11.51. Let [K:k] be a Galois extension. Prove that the subgroup $G' \subset \text{Gal}([K:k])$ is normal if and only if $[K^{G'}:k]$ is a Galois extension.

Exercise 11.52 (!). Let $G' \subset \text{Gal}([K:k])$ be a normal subgroup. Prove that the group $\text{Gal}([K^{G'}:k])$ is isomorphic to the quotient Gal([K:k])/G'.

Definition 11.4. A Galois extension [K:k] is called **cyclic**, if its Galois group is cyclic.

Exercise 11.53 (!). Let Galois group of an extension [K : k] be solvable. Prove that [K : k] can be broken into a sequence of Galois extensions $k = K_0 \subset K_1 \subset ... \subset K_n = K$ so that for any i, $Gal([K_i : K_{i-1}])$ is a cyclic group.

Exercise 11.54 (*). Let k contain all n-th roots of unity and [K : k] be a splitting field of the polynomial $t^n - a$ which does not have roots over k. Prove that this extension is cyclic.

Hint. Let α be some root of the polynomial $t^n - a$. Then all roots of $t^n - a$ are of the form $\alpha, \alpha\xi, \alpha\xi^2, \ldots, \alpha\xi^{p-1}$, where ξ is a root of unity. Prove that the automorphism that maps α to $\alpha\xi^i$, also maps $\alpha\xi^q$ to $\alpha\xi^{q+i}$.

Exercise 11.55 (*). Take $n \in \mathbb{N}$. Let for any k > 1 dividing $n, a \in \mathbb{Q}$ does not equal k-th power of any rational number, and $[K : \mathbb{Q}]$ be the splitting field of the polynomial $t^n - a$. Prove that K contains all n-th roots of unity and that $\operatorname{Gal}([K : \mathbb{Q}])$ is isomorphic to a semi-direct product $\mathbb{Z}/n\mathbb{Z} \rtimes \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$.

Exercise 11.56 (*). Let k be a field of characteristic 0, and let [K : k] be a splitting field of the polynomial $t^n - a$. Prove that the Galois group Gal([K : k]) is solvable.

Hint. If k contains the n-th roots of unity then there is nothing to prove. Suppose not, then prove that K contains the n-th roots. Consider an intermediate extension K' generated by these roots over k and prove that [K : K'] and [K' : k] are Galois extensios with Abelian Galois groups.

Exercise 11.57. Let [K : k] be a cyclic extension of order n, and let ν be a primitive element of the group $\operatorname{Gal}[K : k], \xi \in k$ be the primitive roots of unity of degree n, and $\alpha \in K$ is a primitive element of the extension. Consider the Lagrange's resolvent

$$L = a + \xi^{-1}\nu(a) + \xi^{-2}\nu^{2}(a) + \dots + \xi^{-n+1}\nu^{n-1}(a)$$

Prove that $\nu(L) = \xi L$. Prove that $L \neq 0$.

Exercise 11.58 (*). Prove that $\prod_{i=0}^{n-1} (t - \nu^i(L)) = t^n - L^n$. Prove that L generates K over k and that $L^n \in k$.

Hint. To see that L generates K over k, use the fact that $\operatorname{Gal}[k[\sqrt[n]{L^n}], k] = \mathbb{Z}/n\mathbb{Z}$, and therefore the dimension of k[L] over k is the same as dimension of K over k.

Exercise 11.59 (*). Let [K : k] be a Galois extension of order n, and let k contain all the n-th roots of unity. Prove that [K : k] is cyclic if and only if it is generated by an n-th root of $a \in k$.

Exercise 11.60 (*). (Galois theorem) Deduce the following theorem. A Galois extension [K:k] is obtained by successive addition of solutions of equations of the form $t^n - a$ if and only if the group Gal[K:k] is solvable.

Remark. Let $P(t) \in k[t]$ be a polynomial. The **Galois group** of P is defined to be the Galois group its splitting field. Galois theorem states that P(t) = 0 is solvable by radicals if and only if the Galois group of P(t) is solvable.

Definition 11.5. Let group G act on a set Σ . The action is called **transitive** if any $x \in \Sigma$ can be mapped to any $y \in \Sigma$ by an action of some $g \in G$.

Exercise 11.61. Let $G \subset S_n$ be a subgroup that contains a transposition and that acts transitively on $\{1, 2, 3, \ldots, n\}$. Prove that $G = S_n$.

Exercise 11.62. Let $P \in k[t]$ be an irreducible polynomial, and let ξ_1, \ldots, ξ_n be its roots and let all these roots be distinct. Prove that the Galois group of P acts on $\{\xi_1, \ldots, \xi_n\}$ transitively.

Hint. Consider a decomposition of $\{\xi_1, \ldots, \xi_n\}$ into equivalence classes under the action of Gal(P). Let S be one of these equivalence classes. Prove that the polynomial $\prod_{\xi_i \in S} (t - \xi_i)$ has coefficients in k and divides P.

Exercise 11.63 (!). Let $P \in \mathbb{Q}[t]$ be an irreducible polynomial of degree n that has exactly n-2 real roots. Prove that its Galois group is S_n .

Hint. Prove that Gal(P) acts transitively on the roots of P, and that the complex conjugation preserves the splitting field of P and acts on the set of roots as a transposition.

Exercise 11.64 (!). (Eisenstein theorem) Let $Q = t^n + t^{n-1}a_{n-1} + t^{n-2}a_{n-2} + \cdots + a_0$ be a polynomial with integer coefficients such that all a_i divide a given prime number p, and $a_0 \not/p^2$. Prove that Q is irreducible over \mathbb{Q} .

Exercise 11.65 (*). Prove that $Q(t) = x^5 - 10x + 5$ is an irreducible (over \mathbb{Q}) polynomial which has exactly 3 real roots. Deduce that its Galois group is S_5 .

Exercise 11.66 (*). Prove that the equation $x^5 - 10x + 5 = 0$ is not solvable by radical.