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Greatest common divisor

Let R be a ring.

Definition 2.1. Divisors of zero in ring R are the elements x, y such that xy = 0. R is called
an integral domain if there are no divisors of zero in R.

Throughout this section all rings are supposed to be integral domains.

Definition 2.2. An invertible element in R is called a unit of ring R.

Exercise 2.1. Gauss integers are complex numbers of a form x + y
√
−1 where x, y are integers.

Prove that they form a ring. It is denoted by Z[
√
−1 ].

Exercise 2.2. Describe all the unities in the ring of Gauss integers.

Hint. If a complex number z is invertible in Z[
√
−1 ] then zz is also invertible in Z[

√
−1 ].

Exercise 2.3. Let us fix a positive integer n. Consider a set of all complex numbers of the form
x+ y

√
−n where x, y are integers. Prove that this is a ring.

Exercise 2.4 (*). Fix a positive integer n. Consider a set of all complex numbers of the form
x+y
√
−3

2
where x, y are either both even or both odd. Prove that this is a ring and describe all

unities. We will denote this ring by Z̃[
√
−3].

Definition 2.3. Let R be a ring and x, y ∈ R be elements of R. If x = yz in R then one says that

x is divisible by y in R and y divides x. The relation of divisibility is denoted by x
... y.

Definition 2.4. Let R be a ring and x, y ∈ R be the elements of R. Greatest common divisor
(GCD) of x, y is an element z ∈ R such that z divides x and y and for all z′ which divides x, z′

divides z. x and y are called coprime if 1 is the greatest common divisor of x, y.

Strictly speaking, if one considers an arbitrary ring GCD may not exist for every pair of elements.

Exercise 2.5. Prove that if GCD exists then it is unique up to a unit: if z and z′ are greatest
common divisors x and y in a ring R, then z = ez′, where e is a unit of ring R.

Exercise 2.6. Let Q(2) be a set of all rational numbers, represented as fractions of the form p
q

with odd denominator q. Prove that this set is closed under multiplication and addition and forms
a subring in the ring of rational numbers.

Exercise 2.7. Give an example of a non-invertible element in Q(2).

Exercise 2.8. Describe all unities of the ring Q(2).

Exercise 2.9 (!). Prove that in Q(2) for any two elements there exists a greatest common divisor
of them.

Hint. Prove that any element of Q(2) can be represented in the form e2n, where e is a unit.
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Definition 2.5. Let p be an element of a ring R. It is called prime, if for any q, r with p = qr
either q, or r is a unit of the ring R.

Exercise 2.10. What are prime elements of Q(2)?

Divisibility in the ring of integer numbers

Exercise 2.11. Let x, y be positive integer numbers and z = (x − ky) be the remainder when
x is divided by y. Prove that if GCD(y, z) exists then GCD(x, y) exists as well and GCD(x, y)=
GCD(y, z).

Definition 2.6. The Euclid’s algorithm takes two positive integer numbers x, y, x > y and return
a positive integer number z.

a. If x is divisible by y then algorithm stops and returns y.

b. If x is not divisible by y then algorithm loops, taking numbers x1 = y, y1 = x − ky where
x− ky is the remainder when x is divided by y.

Exercise 2.12. Prove that the Euclid’s algorithm terminates after finite number of iterations.

Exercise 2.13. Prove that the number returned by the Euclid’s algorithm applied to integer num-
bers x, y is GCD(y, z)

Exercise 2.14. Solve the problem 1.26 from ALGEBRA 1 (unless you have already solved it).

Exercise 2.15. Prove that the Euclid’s algorithm applied to numbers x, y can be represented as
a linear combination of x with y integer coefficients: z = ax+ by.

Exercise 2.16. Let x, y be coprime integer numbers and p be a prime number. Suppose that xy
is divisible by pα for some natural number α. Prove that either x is divisible by pα, or y is divisible
by pα.

Exercise 2.17 (!). Deduce that prime multipliers decomposition is unique: if a positive integer
number x can be represented in two ways as a product of prime numbers then these two ways only
differ by an order of multipliers.

Hint. Present x as a product pαi
i where pi are different prime numbers and use the previous problem

to prove that αi can be defined in unique fashion.

Unique factorization ring

Definition 2.7. Let R be a ring. Two decompositions of r ∈ R into prime multipliers r =
p1p2 . . . pk, r = q1q2 . . . qk are called equivalent if r = q1q2 . . . qk can be obtained after by permuting
pi and by multiplying pi by ring unit. It is said that R is a unique factorization ring, if for any
r ∈ R there exists decomposition of r into the product of prime elements which is unique up to
equivalence.

Exercise 2.18 (!). Let a ring R admits decomposition into prime multipliers and for each pair of
elements x, y there exists a GCD in this ring. Let z be represented in R as a linear combination of
x, y: z = ax+ by where a, b ∈ R. Prove that R is a unique factoriazation ring.
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Hint. Use the hint to the problem 2.17.

Exercise 2.19. Consider a positive number n. Consider a ring Z[
√
−n] ⊂ C of complex numbers

of the form z = x+ y
√
−n where x and y are integer. Prove that |z|2 is integer for all z ∈ Z[

√
−n].

Exercise 2.20. Prove that z is a unit in Z[
√
−n] iff |z|2 = 1.

Hint. |z−1|2 = (|z|2)−1.

Exercise 2.21. Let z be an element of Z[
√
−n] such that |z|2 is prime in Z. Prove that z is prime

in Z[
√
−n].

Hint. |zz′|2 = |z|2|z′|2.

Exercise 2.22 (!). Consider the ring Z[
√
−3]. Prove that 2 and 1 ±

√
−3 are primes. Deduce

that Z[
√
−3] is not a unique factorization ring.

Hint. Use the equality 22 = 4.

Division with remainder in rings

Definition 2.8. Let R be a ring. It is said that division with remainder is defined in R if for
every pair x, y, y 6= 0 in R there are elements z, k ∈ R defined such that z = x− ky. In this case z
is called remainder and k is called factor.

Examples. Division with remainder is defined in the ring of integer numbers. Division with
remainder is defined as well in the ring of polynomials k[t] over a field k:

x2 + 2x − 12 x+ 5
x2 + 5x x− 3
− 3x − 12
− 3x − 15

3

Definition 2.9. Let division with remainder be defined in the ring R. Euclid’s algorithm in R
is applied to a pair x, y of non-zero elements in R and is defined recursively. If x is divisible by y
Euclid’s algorithm stops and returns y. If x is not divisible by y then Euclid’s algorithm is applied
to y, z, where z is a remainder when x is divided by y. This process can be infinite, a priori.

Exercise 2.23 (!). Let division with remainder be defined in a ring R. Suppose that Euclid’s
algorithm applied to a pair x, y ∈ R stopped in some finite number of steps and returned z ∈ R.
Prove that

a. z = ax+ by for some a, b ∈ R.

b. z is the greatest common divisor of x and y.

Hint. Proof for the arbitrary ring is the same as in the case of ring of natural numbers.

Definition 2.10. Let R be a ring. It is said that there exists a Euclid’s algorithm in R
or that R is Euclidean if division with remainder is defined in R and for all x, y ∈ R Euclid’s
algorithm stops in finite number of steps.
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Exercise 2.24 (!). Let there exists a prime multipliers decomposition and an Euclid’s algorithm
in a ring R. Prove that R is a unique factorization ring.

Hint. Use the previous problems.

Exercise 2.25. Prove that the ring k[t] of polynomials over a field k.

Exercise 2.26. Prove that an equation x · y = 0 has a solution (for x, y 6= 0) in k[t] mod P if and
only if a polynomial P is irreducible.

The integer part [z] of a complex number z = x+ y
√
−1 is defined as [x+ 0.5] + [y + 0.5]

√
−1

where [ ] denotes an operation of taking an integer part of a real number (if one interprets complex
numbers as points on a plane R2 then [z] is a point with integer coordinates closest to z). Division
with remainder in the ring of Gauss integers Z[

√
−1 ] is defined as follows: the factor of z1 and z2

equals [ z1
z2

] and the remainder equals z1 − [ z1
z2

]z2.

Exercise 2.27. Prove that
∣∣∣z1 − [ z1z2 ] z2∣∣∣ < |z2|.

Exercise 2.28. Prove that in the ring of Gauss integers Z[
√
−1 ] Euclid’s algorithm always termi-

nates.

Hint. Use the previous problem. Deduce that with every step of the Euclid’s algorithm a quantity
min(|z1|2, |z2|2) decreases.

Let R = Z[
√
−n] or R = Z̃[

√
−3]. For any z ∈ C let us denote by [z]R a point of a complex

plane corresponding to point from R closest to z. If there are several such points let us take a point
with greatest Re[z]R, if still there are several such points, let us take one with the greatest Im[z]R.
Define the division of z1 by z2 with remainder in such a way that the factor of z1 and z2 is [ z1

z2
]R

and the remainder is z1 − [ z1
z2

]Rz2.

Exercise 2.29 (*). Prove that if n = 1 then it is the usual division with remainder in Z[
√
−1 ]

Exercise 2.30 (*). Let |z − [z]R| < 1 for all z ∈ C. Prove that with every step of the Euclid’s
algorithm a quantity |z2|2 decreases.

Exercise 2.31 (*). Let for any point z ∈ C there exist r ∈ R such that |r− z| < 1. Prove that R
is Euclidean.

Exercise 2.32 (*). Prove that the following rings are Euclidean: Z[
√
−2], Z̃[

√
−3].

Exercise 2.33. Decompose the number 2 into prime multipliers in Z[
√
−1 ].

Hint. Use the problem 2.21.

Exercise 2.34 (*). Decompose the numbers 3, 5, 7 into prime multipliers in Z[
√
−1 ].

Exercise 2.35 (*). Prove that a prime number in Z of the form p = 4k + 3 is prime in Z[
√
−1 ].

Hint. Prove that p cannot be represented as a sum of squares.

Exercise 2.36. Let z = a+ b
√
−1 be a Gauss integer which is not divisible by 1 +

√
−1 . Suppose

that a and b are coprime. Prove that z and z are coprime.
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Hint. Prove that if a and b are coprime in Z then 2 can be represented as a linear combination
a+ b

√
−1 , a− b

√
−1 .

Exercise 2.37 (!). Let a, b, c be coprime numbers such that a2 + b2 = c2. Prove that c = |z|2 for
some z ∈ Z[

√
−1 ].

Hint. Use the fact that c2 = (a+b
√
−1)(a−b

√
−1) and a, b are coprime. Apply the uniqueness of

prime multipliers decomposition in Z[
√
−1 ] and deduct that every prime multiplier of a+ b

√
−1 ,

a− b
√
−1 appears twice in the decomposition.

Exercise 2.38 (!). Find all triples of integer numbers a, b, c such that a2 + b2 = c2 (“find” means
“write a formula that gives all such triples when one substitutes its variables with integer numbers”).

Hint. Use the previous problem.

Exercise 2.39 (*). Find all triples of coprime numbers a, b, c such that a2 + 2b2 = c2.

Exercise 2.40. Use the uniqueness of prime multipliers decomposition in Z[
√
−2]

Exercise 2.41 (**). Find all triples of coprime numbers a, b, c such that a2 + 3b2 = c2.
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