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Grassmann algebra

Definition 6.1. An algebra A is called graded, if A can be represented in the form A = ⊕Z
i=1A

i

and the multiplication satisfies the following condition: Ai · Aj ⊂ Ai+j. ⊕iAi is often written as
A

q
, which means a direct sum over all possible indices. Some Ai subspaces can be empty. Algebra

unit (if it exists) always belongs to A0.

Exercise 6.1. What is the natural grading of T (V )?

Definition 6.2. A subspace W ⊂ A
q

of a graded algebra is called graded or homogeneous, if
W is a direct sum of components of the form W i ⊂ Ai.

Exercise 6.2 (!). Consider a graded subspace W ⊂ T (V ). Prove that algebra defined by the
relations space W is graded.

Exercise 6.3. Consider a vector space V and its basis 〈xi〉. Consider a subspace W ⊂ V ⊗ V
generated by vectors of the form x⊗ y − y ⊗ x. Prove that an algebra of polynomials k[x1, . . . , xn]
is defined by generators V and relations W . Describe a natural grading inherited from T (V ).

Definition 6.3. The algebra obtained is called symmetric algebra of space V , and is denoted
as Sym

q
(V ).

Exercise 6.4. Let dimV > 1. Are there an injective algebra homomorphism Sym
q
(V )−→ T (V ).

Definition 6.4. Consider a vector space V and a graded subspace W ⊂ V ⊗ V generated by
vectors of the form x ⊗ y + y ⊗ x and vectors of the form x ⊗ x. The graded algebra defined by
the generators space V and relations space W is called a Grassmann algebra and is denoted as
Λ

q
(V ). The space Λi(V ) is called an i-th exterior power of the space V and the operation of

multiplication in Grassmann algebra is called exterior multiplication. Exterior multiplication is
usually denoted as ∧.

Remark. Elements of Grassmmann algebra can be thought of as “anticommutative polinomials”
on V .

Remark. Grassmann algebra is a particular case of Clifford algebra defined in Algebra 5.

Exercise 6.5. Prove that Λ1V is isomorphic to V .

Exercise 6.6. Consider a finite-dimensional space V . Prove that Λ2(V )∗ is isomorphic to a space
of bilinear antisymmetric forms on V .

Exercise 6.7. Consider a subalgebra Λ2 q(V ) ⊂ Λ
q
(V ) that consists of linear combinations of

vectors of even grading. Prove that this subalgebra is commutative.

Definition 6.5. Vector Λ
q
(V ) is called even, if it belongs to an even grading component and odd

if it belongs to an odd component. A parity x̃ of a vector x is defined to be zero for an even x and
1 for an odd x. .

Exercise 6.8 (!). Prove that xy = (−1)x̃ỹyx.
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Exercise 6.9 (*). Find all elements η ∈ Λ2(V ) such that η2 = 0.

Exercise 6.10 (!). Let x1, x2, . . . be a basis in V ∼= Λ1V . Denote the product of vectors that
belong to the basis in Λ

q
(V ) as xi1∧xi2∧xi3∧· · · . Prove that vectors of the form xi1∧xi2∧xi3∧· · ·

where i1 < i2 < i3 < . . . , define a basis in Λ
q
(V ).

Exercise 6.11 (!). Let V be a d-dimensional vector space. Find dim Λi(V ). Prove that ΛdV is
one-dimensional.

Definition 6.6. The space ΛdV is called a space of determinant vectors in V .

Exercise 6.12 (!). Let V be a d-dimensional vector space, x1, x2, . . . , xd be its basis and det :=
x1 ∧ x2 ∧ x3 · · · ∧ xd be a determinant vector in ΛdV . Consider a permutation I = (i1, i2, . . . , id)
and consider a vector I(det) := xi1 ∧ xi2 ∧ xi3 · · · ∧ xid . Prove that I(det) = ± det. Prove that this
correspondence defines a homomorphism from a permutation group Sn into {±1}. Prove that this
homomorphism maps a product of an odd number of transpositions to −1 and a product of even
number of transpositions to 1.

Definition 6.7. A homomorphism constructed above Sn
σ−→ Z/2Z is called a sign of a permuta-

tion. The additive notation is used here for historical reasons. It is said that a permutation is even
if its sign is 0 and is odd if its sign is 1.

Exercise 6.13. Consider a permutation decomposed into cycles as follows:

I = (i1,1, i2,1 . . . ik1,1)(i1,2, i2,2 . . . ik2,2) . . .

where cycles are of length k1, k2 etc. Prove that I is even iff there is an even number of even ki-s.

From now till the end of the section we suppose that the field k we are using is of characteristic
0.

Definition 6.8. Let η ∈ V ⊗i be a vector of a i-th tensor power of the space V . Consider a natural
action of Si on V ⊗i. Define Alt(η) as

Alt(η) :=
1

i!

∑
I∈Si

(−1)σ(I)I(η).

This operation is called alternation. It is said that a vector η ∈ V ⊗i is totally antisymmetric
if η = Alt(η).

Exercise 6.14. Let η = 1
i!

∑
I∈Si

I(η). Prove that I(η) = η for any permutation I ∈ Si.

Exercise 6.15 (!). Consider a totally antisymmetric vector η ∈ V ⊗i. Prove that I(η) = (−1)σ(I)η
for any permutation I ∈ Si.

Exercise 6.16 (!). Prove that Alt(Alt(η)) = Alt(η) for any η.

Exercise 6.17. Consider a tensor xi1xi2 · · ·xik ∈ V ⊗i . Prove that

Alt(xi1xi2 . . . xik) = −Alt(xi1xi2 . . . xilxil−1 . . . xik)

(xil is permuted with xil−1 in the second expression).
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Exercise 6.18. Prove that the map xi1xi2 . . . xik −→ Alt(xi1xi2 . . . xik) vanishes on all tensors of
the form awb, where w belongs to the relations space of Λ

q
(V ). Deduce that there exists a natural

map Λi(V )−→Ri from Λi(V ) to the space of totally antisymmetric tensors.

Exercise 6.19 (!). Prove that the natural map constructed above Λi(V )−→Ri is a bijection.

Exercise 6.20 (!). We put Λi(V ) into one-to-one correspondence with the space of totally an-
tisymmetric tensors. It defines a multiplicative structure on antisymmetric tensors. Prove that
this multiplicative structure can be defined like this: take two totally antisymmetric tensors
α, β ∈ T (V ), multiply them in T (V ) and apply Alt to the result.

Exercise 6.21. Consider two algebras A and B over a field k. Define a multiplicative structure on
A⊗B like this: a⊗ b · a′ ⊗ b′ = aa′ ⊗ bb′. Prove that this multiplication indeed defines an algebra
structure on A⊗B.

Definition 6.9. A tensor product of algebras A and B is a space A ⊗ B with multiplicative
structure defined above. If the algebras are graded, then the grading on the tensor product is
defined by the formula (A⊗B)n = ⊕i+j=nAi ⊗Bj.

Exercise 6.22 (!). Let V1, V2 be vector spaces. Prove that Sym
q
(V ) is isomorphic (as an algebra)

to Sym
q
(V1) ⊗ Sym

q
(V1). Prove that Λ

q
(V1 ⊕ V2) and Λ

q
(V1) ⊗ Λ

q
(V2) are isomorphic as vector

spaces. Is this isomorphism an isomorphism of algebras?

Exercise 6.23. Prove that dim Λ
q
(V ) = 2dimV .

Hint. Use the previous problem.

Exercise 6.24 (*). Consider a mapping

V ⊗ Λi(V )
∧−→ Λi+1(V ),

defined by the formula x⊗η 7→ x∧η. For some fixed η we get a linear operator Lη : V −→ Λi+1(V ).
Prove that for η 6= 0 an inequality dim kerLη 6 i holds.

Exercise 6.25 (*). Suppose in the previous problem setting an equality dim kerLη = i holds.
Prove that in this case η can be represented as η = x1∧x2∧· · ·∧xi for some vectors x1, . . . , xi ∈ V .

Exercise 6.26 (*). Let P ∈ Symi(V ∗) be a symmetric i-form on V . Suppose that P (v, v, v, . . . ) =
0 for all v ∈ V . Is it possible that P is non-zero?
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Determinant

Exercise 6.27. Consider a one-dimensional vector space V over k. Prove that EndV is naturally
isomorphic to k.

Exercise 6.28 (!). Consider a linear space V and a linear operator A ∈ End(V ). Prove that A
on V ∼= Λ1V can be uniquely extended to a grading preserving homomorphism from Λ

q
V to itself.

Definition 6.10. Consider a d-dimensional vector space V over k and a linear operator A ∈
End(V ). Consider a endomorphism induced by A defined on a space of determinant vectors:

detA ∈ End(Λd(V ))

Since Λd(V ) is one-dimensional, End(Λd(V )) is naturally isomorphic to k. This allows to treat
detA as a number, i.e. an element of k. This number is called a determinant of a linear operator
A.

Exercise 6.29 (!). Consider a set of d vectors x1, . . . , xd in a vector space V . Prove that their
product x1 ∧ x2 ∧ . . . in Λ

q
(V ) is zero iff these vectors are linearly dependent.

Exercise 6.30. Consider an operator A ∈ End(V ) which has a non-zero kernel (such an operator
is called singular of degenerate). Prove that detA = 0.

Exercise 6.31. Let an operator A ∈ End(V ) be invertible (such an operator is called nonsingular
or nondegenerate). Prove that detA 6= 0.

Exercise 6.32 (!). Prove that det defines a homomorphism from a group GL(V ) of invertible
matrices to k∗, a multiplicative group of all nonzero elements of k.

Exercise 6.33 (!). Consider vector spaces V and V ′, and endomorphisms A,A′. Then A ⊕ A′

defines an endomorphism V ⊕ V ′. Prove that det(A⊕ A′) = detA detA′.

Exercise 6.34. Consider a finite-dimensional vector space V , endowed with a positive bilinear
symmetric form g. Recall that an endomorphism A ∈ EndV is called orthogonal if it preserves
g, i.e. for any x, y ∈ V it is true that g(Ax,Ay) = g(x, y). Prove that an orthogonal operator is
always invertible. Consider an orthogonal operator in R2. What values can detA can take?

Exercise 6.35 (*). Consider a vector space V endowed with

a. nondegenerate bilinear symmetric form g

b. nondegenerate bilinear antisymmetric form g

c. (**) nondegenerate bilinear form (i.e. an isomorphism g : V −→ V ∗).

Consider a linear operator A ∈ End(V ) that preserves g. Prove that A is invertible in any of the
aforementioned cases and find all the values that detA can take.
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