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Grassmann algebra

Definition 6.1. An algebra A is called graded, if A can be represented in the form A = @®% ;| A°
and the multiplication satisfies the following condition: A*- A7 C A™J. @; A" is often written as
A", which means a direct sum over all possible indices. Some A? subspaces can be empty. Algebra
unit (if it exists) always belongs to A°.

Exercise 6.1. What is the natural grading of 7'(V')?

Definition 6.2. A subspace W C A" of a graded algebra is called graded or homogeneous, if
W is a direct sum of components of the form W* C A’

Exercise 6.2 (!). Consider a graded subspace W C T(V'). Prove that algebra defined by the
relations space W is graded.

Exercise 6.3. Consider a vector space V' and its basis (z;). Consider a subspace W C V @ V
generated by vectors of the form x ® y — y ® x. Prove that an algebra of polynomials k[z1, ..., x,]
is defined by generators V' and relations W. Describe a natural grading inherited from 7'(V).

Definition 6.3. The algebra obtained is called symmetric algebra of space V', and is denoted
as Sym" (V).

Exercise 6.4. Let dimV > 1. Are there an injective algebra homomorphism Sym" (V) — T'(V).

Definition 6.4. Consider a vector space V and a graded subspace W C V ® V generated by
vectors of the form z ® y + y ® x and vectors of the form = ® x. The graded algebra defined by
the generators space V' and relations space W is called a Grassmann algebra and is denoted as
A (V). The space A'(V) is called an i-th exterior power of the space V and the operation of
multiplication in Grassmann algebra is called exterior multiplication. Exterior multiplication is
usually denoted as A.

Remark. Elements of Grassmmann algebra can be thought of as “anticommutative polinomials”
on V.

Remark. Grassmann algebra is a particular case of Clifford algebra defined in Algebra 5.
Exercise 6.5. Prove that A'V is isomorphic to V.

Exercise 6.6. Consider a finite-dimensional space V. Prove that A*(V)* is isomorphic to a space
of bilinear antisymmetric forms on V.

Exercise 6.7. Consider a subalgebra A* (V) C A(V) that consists of linear combinations of
vectors of even grading. Prove that this subalgebra is commutative.

Definition 6.5. Vector A*(V) is called even, if it belongs to an even grading component and odd
if it belongs to an odd component. A parity ¥ of a vector x is defined to be zero for an even x and
1 for an odd x. .

Exercise 6.8 (!). Prove that zy = (—1)"yx.
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Exercise 6.9 (*). Find all elements n € A*(V') such that n* = 0.

Exercise 6.10 (!). Let xy,79,... be a basis in V' = A'V. Denote the product of vectors that
belong to the basis in A"(V') as x;, Az, Az A+ -+ . Prove that vectors of the form x;, Ax;, Az A~ -
where iy < i < i3 < ..., define a basis in A"(V).

Exercise 6.11 (). Let V be a d-dimensional vector space. Find dim A*(V). Prove that AV is
one-dimensional.

Definition 6.6. The space A?V is called a space of determinant vectors in V.

Exercise 6.12 (!). Let V be a d-dimensional vector space, x1, s, ..., x4 be its basis and det :=
21 A To A xg--- A xg be a determinant vector in A?V. Consider a permutation I = (11,32, ...,1q)
and consider a vector I(det) := x;, A x;, A xiy - - Ax;,. Prove that I(det) = £ det. Prove that this
correspondence defines a homomorphism from a permutation group S,, into {£1}. Prove that this
homomorphism maps a product of an odd number of transpositions to —1 and a product of even
number of transpositions to 1.

Definition 6.7. A homomorphism constructed above S, ——+ Z/27Z is called a sign of a permuta-
tion. The additive notation is used here for historical reasons. It is said that a permutation is even
if its sign is 0 and is odd if its sign is 1.

Exercise 6.13. Consider a permutation decomposed into cycles as follows:

I = (2.1’1, Z'271 . ik1,1)<i1,2, 1'272 . ik%g) Ce

where cycles are of length kq, ko etc. Prove that [ is even iff there is an even number of even k;-s.

From now till the end of the section we suppose that the field k£ we are using is of characteristic
0.

Definition 6.8. Let n € V¥ be a vector of a i-th tensor power of the space V. Consider a natural
action of S; on V®. Define Alt(n) as

Al(y) == 5 S(-1)7 01 ().

’ I€S;

This operation is called alternation. It is said that a vector n € V¥ is totally antisymmetric
if n = Alt(n).

Exercise 6.14. Let n = %Zlesi I(n). Prove that I(n) = n for any permutation I € S;.

Exercise 6.15 (!). Consider a totally antisymmetric vector € V. Prove that I(n) = (—1)7"y
for any permutation I € S;.

Exercise 6.16 (!). Prove that Alt(Alt(n)) = Alt(n) for any 7.
Exercise 6.17. Consider a tensor x; z;, - - - x;, € V. Prove that
Alt(x;, 2y .. 2 ) = — Alt(zg, 2, . 22521 ... 25,

(x;, is permuted with z;,_; in the second expression).
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Exercise 6.18. Prove that the map z;,z;, ...z, — Alt(z;,z;, ... x;, ) vanishes on all tensors of
the form awb, where w belongs to the relations space of A*(V). Deduce that there exists a natural
map A'(V) — R’ from A*(V) to the space of totally antisymmetric tensors.

Exercise 6.19 (!). Prove that the natural map constructed above A’(V) — R’ is a bijection.

Exercise 6.20 (!). We put A*(V) into one-to-one correspondence with the space of totally an-
tisymmetric tensors. It defines a multiplicative structure on antisymmetric tensors. Prove that
this multiplicative structure can be defined like this: take two totally antisymmetric tensors
a, € T(V), multiply them in T'(V') and apply Alt to the result.

Exercise 6.21. Consider two algebras A and B over a field k. Define a multiplicative structure on
A® B like this: a®b-d' ® b = aa’ ® bb'. Prove that this multiplication indeed defines an algebra
structure on A ® B.

Definition 6.9. A tensor product of algebras A and B is a space A ® B with multiplicative
structure defined above. If the algebras are graded, then the grading on the tensor product is
defined by the formula (A ® B)" = &, -, A" ® B.

Exercise 6.22 (!). Let V4, V4 be vector spaces. Prove that Sym® (V) is isomorphic (as an algebra)
to Sym” (V1) ® Sym™(V1). Prove that A"(V3 @ Va) and A"(V1) ® A"(V,) are isomorphic as vector
spaces. Is this isomorphism an isomorphism of algebras?

Exercise 6.23. Prove that dim A"(V) = 2dmV,
Hint. Use the previous problem.
Exercise 6.24 (*). Consider a mapping
V@ AN (V) L AV,

defined by the formula x®n — xAn. For some fixed n we get a linear operator L, : V — A" (V).
Prove that for n # 0 an inequality dim ker L,, < 7 holds.

Exercise 6.25 (*). Suppose in the previous problem setting an equality dimker L, = ¢ holds.
Prove that in this case n can be represented as n = x1 Aza A - - - Ax; for some vectors xy,...,x; € V.

Exercise 6.26 (*). Let P € Sym'(V*) be a symmetric i-form on V. Suppose that P(v,v,v,...) =
0 for all v € V. Is it possible that P is non-zero?
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Determinant

Exercise 6.27. Consider a one-dimensional vector space V over k. Prove that End V' is naturally
isomorphic to k.

Exercise 6.28 (!). Consider a linear space V' and a linear operator A € End(V). Prove that A
on V = AV can be uniquely extended to a grading preserving homomorphism from A"V to itself.

Definition 6.10. Consider a d-dimensional vector space V over k and a linear operator A €
End (V). Consider a endomorphism induced by A defined on a space of determinant vectors:

det A € End(A4(V))

Since A4(V) is one-dimensional, End(A%(V')) is naturally isomorphic to k. This allows to treat
det A as a number, i.e. an element of k. This number is called a determinant of a linear operator

A.

Exercise 6.29 (!). Consider a set of d vectors zy,...,x4 in a vector space V. Prove that their
product 3 A xg A ... in A*(V) is zero iff these vectors are linearly dependent.

Exercise 6.30. Consider an operator A € End(V') which has a non-zero kernel (such an operator
is called singular of degenerate). Prove that det A = 0.

Exercise 6.31. Let an operator A € End(V') be invertible (such an operator is called nonsingular
or nondegenerate). Prove that det A # 0.

Exercise 6.32 (!). Prove that det defines a homomorphism from a group GL(V') of invertible
matrices to k*, a multiplicative group of all nonzero elements of k.

Exercise 6.33 (!). Consider vector spaces V' and V', and endomorphisms A, A’. Then A ® A’
defines an endomorphism V' & V'. Prove that det(A & A’) = det Adet A'.

Exercise 6.34. Consider a finite-dimensional vector space V', endowed with a positive bilinear
symmetric form ¢g. Recall that an endomorphism A € EndV is called orthogonal if it preserves
g, i.e. for any z,y € V it is true that g(Ax, Ay) = g(z,y). Prove that an orthogonal operator is
always invertible. Consider an orthogonal operator in R?. What values can det A can take?

Exercise 6.35 (*). Consider a vector space V' endowed with
a. nondegenerate bilinear symmetric form g
b. nondegenerate bilinear antisymmetric form g
c. (**) nondegenerate bilinear form (i.e. an isomorphism g : V — V™).

Consider a linear operator A € End(V') that preserves g. Prove that A is invertible in any of the
aforementioned cases and find all the values that det A can take.



