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Characteristic polynomial

Definition 8.1. Consider a linear operator A ∈ EndV over a vector space V . Consider a vector
v ∈ V such that A(v) = λv. This vector is called an eigenvector and λ is called an eigenvalue
of the operator A.

Exercise 8.1. Consider a 2-dimensional vector space V over R, endowed with non-degenerate
bilinear symmetric form g, nd let A ∈ EndV be an orthogonal automorphism that is not equal
to ±Id. Prove that if g is positive definite or negative definite (such forms are called definite
forms) then A does not have eigenvectors. Prove that if g is not definite then A has two linearly
independent eigenvectors. What eigenvalues can A have in that case?

Exercise 8.2. Consider a set of fractions on the form P (t)
Q(t)

where P , Q are polynomials over k and

Q 6= 0. Consider an equivalence relation generated by the relation defined as follows: P (t)
Q(t)
∼ P ′(t)

Q′(t)
,

if
P (t) = Z(t)P ′(t), Q(t) = Z(t)Q′(t)

Define addition and multiplication on equivalence classes in the usual manner:

P (t)

Q(t)
+
P ′(t)

Q′(t)
=
P (t)Q′(t) + P ′(t)Q(t)

Q(t)Q′(t)
,

P (t)

Q(t)

P ′(t)

Q′(t)
=
P (t)P ′(t))

Q(t)Q′(t)

Prove that this structure is a field.

Definition 8.2. This field is called the field of rational functions of one variable or just the
field of rational fractions. It is denoted k(t).

Exercise 8.3. Prove that this field is not an algebraic extension of k.

Exercise 8.4. Consider a n-dimensional vector space V over k and some other field K ⊃ k.
Consider the tensor product K ⊗k V endowed with the natural action of the multiplicative group
K∗. Prove that this is a vector space. Prove that this vector space is finite-dimensional over K if
V is finite-dimensional over k. Find the dimension of K ⊗k V over K assuming the dimension of
V over k is known.

Consider a vector space V over k and a linear operator A ∈ EndV on it. Consider the tensor
product of V by the vector space k(t) over k, V ⊗k k(t). The A action can be naturally extended to
a linear operator on V ⊗ k(t). We will abuse the notation and denote the corresponding operator
A ∈ Endk(t)(V ⊗k k(t)) as A.

Exercise 8.5 (!). Consider a linear operator A ∈ EndV on a n-dimensional vector space V over
k, and let det(t · Id−A) ∈ k(t) be the determinant of the operator t · Id−A that acts on V ⊗k k(t).
Prove that this is a polynomial over k of degree n with the leading coefficient 1.

Definition 8.3. This polynomial is called the characteristic polynomial of the operator A
and is denoted ChpolyA(t).

Exercise 8.6 (!). Let λ be a root of the characteristic polynomial of A. Prove that it is an
eigenvalue of A. Prove that all A eigenvalues are the roots of ChpolyA(t).
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Hint. An operator λId− A has a non-trivial kernel iff λ is a root of ChpolyA(t).

Exercise 8.7. Consider eigenvectors v1, . . . , vn that correspond to distinct eigenvalues. Prove that
v1, . . . , vn are linearly independent.

Exercise 8.8. Consider a linear operator A ∈ EndV on a n-dimensional vector space. Suppose
that the characteristic polynomial has n distinct roots. Prove that A is diagonalisable, that is its
matrix is diagonal in some basis.

Exercise 8.9 (*). Consider a finite-dimensional vector space V over C. Consider the set of all
linear operators on V as a vector space with the natural topology on it. Prove that the set of
diagonalisable operators is dense in EndV . Prove that the set of non-diagonalisable operators is
nowhere dense.

Exercise 8.10 (!). Prove that ChpolyA(t) = ChpolyBAB−1(t) for any invertible linear operator B.

Definition 8.4. Consider a linear operator A ∈ EndV on an n-dimensional vector space and his
characteristic polynomial ChpolyA(t) = tn+an−1t

n−1 +an−2t
n−2 + . . . . The coefficient an−1 is called

the trace of A and is denoted trA.

Exercise 8.11 (!). Consider an operator A defined by a matrix Aij. Prove that trA =
∑
Aii (the

sum of all numbers standing on the diagonal of the matrix).

Exercise 8.12 (*). Prove that trAB = trBA for any linear operators A, B.

Remark. If B is invertible, this follows from 8.10.

Exercise 8.13. Consider a finite-dimensional vector space V . Consider the homomorphism V ⊗
V ∗ −→ Hom(V, V ) that maps v⊗ λ ∈ V ⊗ V ∗ to v′ −→ λ(v′)⊗ v ∈ Hom(V, V ). Prove that it is an
isomorphism.

Exercise 8.14 (*). Consider A ∈ EndV a linear operator on a finite-dimensional vector space and
A⊗ A∗, an operator induced by A on V ⊗ V ∗. Consider the tensor Id ∈ V ⊗ V ∗ that corresponds
to the identity operator under the isomorphism Hom(V, V ) ∼= V ⊗ V ∗ and the natural pairing

V ⊗ V ∗ µ−→ k. Prove that trA = µ(A⊗ A∗(Id)).

Upper triangular matrices

Exercise 8.15. Let V ′ ⊂ V b k-dimensional subspace of a vector space and A ∈ EndV be an
operator that preserves V ′ (that is, A maps V ′ to itself). Choose a basis e1, . . . , en in V such that
e1, . . . , ek ∈ V ′. Prove that A has the following form in this basis:

∗ ∗ ∗ . . . ∗ ∗ ∗
...

...
...

. . .
...

...
...

∗ ∗ ∗ . . . ∗ ∗ ∗
0 0 0 . . . ∗ ∗ ∗
...

...
...

. . .
...

...
...

0 0 0 . . . ∗ ∗ ∗


.

(lower left rectangle k × (n− k) is filled with zeroes and other coefficients are arbitrary).
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Definition 8.5. Consider an n-dimensional vector space V . A sequence of subspaces 0 = V0 ⊂
V1 ⊂ V2 ⊂ · · · ⊂ Vn = V is called a flag (or a full flag), if dimVi = i. The basis e1, . . . , en is called
adapted to the flab, if ei ∈ Vi. We say that a linear operator A ∈ EndV preserves the flag
{Vi}, if A(Vi) ⊂ Vi.

Exercise 8.16 (!). Let A ∈ EndV be a linear operator. Prove that A preserves some flag {Vi} iff
A can be represented by an upper-triangular matrix in in a basis e1, . . . , en adapted to {Vi}.

Exercise 8.17 (!). Let V be a vector space over an algebraically closed field. Prove that A ∈
EndV preserves a flag 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V (and consequently can be represented by
an upper-triangular matrix in some basis).

Hint. Take as V1 a vector subspace spanned by an eigenvector and apply induction.

Exercise 8.18 (*). Consider an invertible linear operator A ∈ EndV on an n-dimensional space
that has n pairwise disjoint eigenvalues. Consider a subalgebra RA in EndV generated by A. Prove
that dimRA = n.

Hint. Use the Vandermonde determinant.

Exercise 8.19 (*). Consider two commuting linear operators. Prove that the can be represented
by two upper-triangular matrices in the same basis e1, . . . , en.

Exercise 8.20 (*). Consider l pairwise commuting linear operators. Prove that they all can be
represented by upper-triangular matrices in the same basis e1, . . . , en.

Symmetric and skew-symmetric matrices

Definition 8.6. A matrix is called symmetric if it is equal to its transpose: A = A⊥. A matrix
is called skew-symmetric, or antisymmetric, if A = −A⊥.

Definition 8.7. Consider a vector space V together with a non-degenerate bilinear symmetric
form g and a linear operator A ∈ EndV . The operator A is called symmetric if for any x, y ∈ V
we have g(Ax, y) = g(x,Ay); it is called skew-symmetric, if we have g(Ax, y) = −g(x,Ay).

Definition 8.8. Let V be a vector space endowed with a non-degenerate bilinear symmetric form
g. Recall that a basis e1, . . . , en ∈ V is called orthonormal if ei-s are pairwise orthogonal and
g(ei, ei) = 1.

Exercise 8.21. Let V be a vector space endowed with a non-degenerate bilinear symmetric form
g and e1, . . . , en be an orthonormal basis. Consider a linear operator A ∈ EndV . Prove that A is
symmetric iff its matrix is symmetric, and antisymmetric iff its matrix is antisymmetric.

Exercise 8.22. Let V be a finite-dimensional vector space endowed with a bilinear non-degenerate
form g. Prove that any bilinear form can be a represented as g(Ax, y) for some linear operator A
and that such an operator is unique.

Remark. In the previous problem setting assume that g is symmetric. Obviously, The form
g(Ax, y) is symmetric iff A is symmetric, and antisymmetric iff A is antisymmetric.
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Exercise 8.23. Let V be a finite-dimensional vector space. The space of bilinear forms is naturally
isomorphic to V ∗ ⊗ V ∗ and the space EndV is naturally isomorphic to V ⊗ V ∗. A form g induces
an isomorphism between V and V ∗. This gives an isomorphism between V ∗ ⊗ V ∗ and V ⊗ V ∗, i.e.
between the bilinear forms and the linear operators. Prove that this isomorphism coincides with
the one constructed in the Problem 8.22.

Exercise 8.24 (!). Let V be a finite-dimensional vector space endowed with non-degenerate bi-
linear symmetric form g and let A by a symmetric operator. Suppose A preserve the subspace
V ′ ⊂ V . Prove that A preserves the orthogonal complement to V ′.

Definition 8.9. Let V be a vector space over R and V ⊗C it the tensor product of the latter with
C. Since C ∼= R ⊕

√
−1 R, there is an isomorphism V ⊗ C ∼= V ⊕

√
−1 V . That means that one

can consider a real (Re v) and imaginary part (Im v) of any vector v ∈ V ⊗ C.

Exercise 8.25. Let V be a vector space over R endowed with a bilinear symmetric form g. Con-
sider a complex vector space V ⊗ C and continue g to V ⊗ C using the linearity of the bilinear
complex-valued form. For any vector v ∈ V ⊗C denote by v the vector Re(v)−

√
−1 Im(v) (this vec-

tor is called the complex conjugate to v). Prove that g(v, v) = g(Re(v),Re(v))+g(Im(v), Im(v)).

Exercise 8.26 (!). Let V by a finite-dimensional vector space over R of dimension n endowed
with a positive definite bilinear symmetric form g (such space is called Euclidean), and let A be a
symmetric operator and P (t) be his characteristic polynomial. Prove that P (t) has exactly n real
roots.

Hint. Consider the action of A on V ⊗C, and let v be the eigenvector corresponding to a non-real
eigenvalue. Prove that g(v, v) = 0. Use the Problem 8.25.

Exercise 8.27 (!). Let V be a Euclidean space and A ∈ V be a symmetric operator. Prove that V
has an orthogonal basis of eigenvectors of A. In other words, A is diagonalisable in an orthonormal
basis.

Hint. Use the Problems 8.26 and 8.24.

Exercise 8.28 (*). Let V be a finite-dimensional vector space over R endowed with a non-
degenerate but non necessary positive definite bilinear symmetric form. Is any symmetric operator
diagonalisable?

Exercise 8.29 (*). Let V be a Euclidean space and A ∈ V be a skew-symmetric operator. Denote
by ω the skew-symmetric form g(A·, ·). Let v be an eigenvector of the operator A2 (with a non-zero
eigenvalue). Prove that ω is non-degenerate on the linear span 〈v, A(v)〉.

Exercise 8.30 (*). In the previous problem setting prove that in some orthonormal basis e1, . . . , e2m, e2m+1, . . . , en
ω is of the form

m−1∑
i=0

αie
i+1 ∧ ei+2.

Exercise 8.31 (*). Let A be a skew-symmetric operator defined on a Euclidean space and detA
be its determinant. Consider detA as a polynomial of matrix coefficients of A in some basis. Prove
that in a odd-dimensional space V this determinant polynomial is identically zero. Prove that
detA is a full square of some other polynomial of matrix coefficients. This polynomial is called the
Pfaffian of A.
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Hint. Let 2m = dimV . Consider the bilinear form ω represented in the form above. Prove that
ωm (considered as an element of the Grassmann algebra Λ∗(V ∗)) is proportional to e1∧e2∧· · ·∧e2m
with a polynomial coefficient Q, moreover Q2 = detA.
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