ALGEBRA 8: Linear algebra: characteristic polynomial

Characteristic polynomial

Definition 8.1. Consider a linear operator $A \in \text{End} V$ over a vector space V. Consider a vector $v \in V$ such that $A(v) = \lambda v$. This vector is called an eigenvector and λ is called an eigenvalue of the operator A.

Exercise 8.1. Consider a 2-dimensional vector space V over \mathbb{R}, endowed with non-degenerate bilinear symmetric form g, and let $A \in \text{End} V$ be an orthogonal automorphism that is not equal to $\pm \text{Id}$. Prove that if g is positive definite or negative definite (such forms are called definite forms) then A does not have eigenvectors. Prove that if g is not definite then A has two linearly independent eigenvectors. What eigenvalues can A have in that case?

Exercise 8.2. Consider a set of fractions on the form $\frac{P(t)}{Q(t)}$ where P, Q are polynomials over k and $Q \neq 0$. Consider an equivalence relation generated by the relation defined as follows: $\frac{P(t)}{Q(t)} \sim \frac{P'(t)}{Q'(t)}$, if

$$P(t) = Z(t)P'(t), \quad Q(t) = Z(t)Q'(t)$$

Define addition and multiplication on equivalence classes in the usual manner:

$$\frac{P(t)}{Q(t)} + \frac{P'(t)}{Q'(t)} = \frac{P(t)Q'(t) + P'(t)Q(t)}{Q(t)Q'(t)}, \quad \frac{P(t)}{Q(t)} \cdot \frac{P'(t)}{Q'(t)} = \frac{P(t)P'(t)}{Q(t)Q'(t)}$$

Prove that this structure is a field.

Definition 8.2. This field is called the field of rational functions of one variable or just the field of rational fractions. It is denoted $k(t)$.

Exercise 8.3. Prove that this field is not an algebraic extension of k.

Exercise 8.4. Consider a n-dimensional vector space V over k and some other field $K \ni k$. Consider the tensor product $K \otimes_k V$ endowed with the natural action of the multiplicative group K^*. Prove that this is a vector space. Prove that this vector space is finite-dimensional over K if V is finite-dimensional over k. Find the dimension of $K \otimes_k V$ over K assuming the dimension of V over k is known.

Consider a vector space V over k and a linear operator $A \in \text{End} V$ on it. Consider the tensor product of V by the vector space $k(t)$ over k, $V \otimes_k k(t)$. The A action can be naturally extended to a linear operator on $V \otimes k(t)$. We will abuse the notation and denote the corresponding operator $A \in \text{End}_{k(t)}(V \otimes_k k(t))$ as A.

Exercise 8.5 (!). Consider a linear operator $A \in \text{End} V$ on a n-dimensional vector space V over k, and let $\det(t \cdot \text{Id} - A) \in k(t)$ be the determinant of the operator $t \cdot \text{Id} - A$ that acts on $V \otimes_k k(t)$. Prove that this is a polynomial over k of degree n with the leading coefficient 1.

Definition 8.3. This polynomial is called the characteristic polynomial of the operator A and is denoted $\text{Chpoly}_A(t)$.

Exercise 8.6 (!). Let λ be a root of the characteristic polynomial of A. Prove that it is an eigenvalue of A. Prove that all A eigenvalues are the roots of $\text{Chpoly}_A(t)$.
Hint. An operator $\lambda Id - A$ has a non-trivial kernel iff λ is a root of $\text{Chpoly}_A(t)$.

Exercise 8.7. Consider eigenvectors v_1, \ldots, v_n that correspond to distinct eigenvalues. Prove that v_1, \ldots, v_n are linearly independent.

Exercise 8.8. Consider a linear operator $A \in \text{End} V$ on a n-dimensional vector space. Suppose that the characteristic polynomial has n distinct roots. Prove that A is diagonalisable, that is its matrix is diagonal in some basis.

Exercise 8.9 (*). Consider a finite-dimensional vector space V over \mathbb{C}. Consider the set of all linear operators on V as a vector space with the natural topology on it. Prove that the set of diagonalisable operators is dense in $\text{End} V$. Prove that the set of non-diagonalisable operators is nowhere dense.

Exercise 8.10 (!). Prove that $\text{Chpoly}_A(t) = \text{Chpoly}_{B A B^{-1}}(t)$ for any invertible linear operator B.

Definition 8.4. Consider a linear operator $A \in \text{End} V$ on an n-dimensional vector space and his characteristic polynomial $\text{Chpoly}_A(t) = t^n + a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + \ldots$. The coefficient a_{n-1} is called the trace of A and is denoted $\text{tr} A$.

Exercise 8.11 (!). Consider an operator A defined by a matrix A_{ij}. Prove that $\text{tr} A = \sum A_{ii}$ (the sum of all numbers standing on the diagonal of the matrix).

Exercise 8.12 (*). Prove that $\text{tr} AB = \text{tr} BA$ for any linear operators A, B.

Remark. If B is invertible, this follows from 8.10.

Exercise 8.13. Consider a finite-dimensional vector space V. Consider the homomorphism $V \otimes V^* \rightarrow \text{Hom}(V, V)$ that maps $v \otimes \lambda \in V \otimes V^*$ to $v' \rightarrow \lambda(v') \otimes v \in \text{Hom}(V, V)$. Prove that it is an isomorphism.

Exercise 8.14 (*). Consider $A \in \text{End} V$ a linear operator on a finite-dimensional vector space and $A \otimes A^*$, an operator induced by A on $V \otimes V^*$. Consider the tensor $\text{Id} \in V \otimes V^*$ that corresponds to the identity operator under the isomorphism $\text{Hom}(V, V) \cong V \otimes V^*$ and the natural pairing $V \otimes V^* \rightarrow k$. Prove that $\text{tr} A = \mu(A \otimes A^*(\text{Id}))$.

Upper triangular matrices

Exercise 8.15. Let $V' \subset V$ a k-dimensional subspace of a vector space and $A \in \text{End} V$ be an operator that preserves V' (that is, A maps V' to itself). Choose a basis e_1, \ldots, e_n in V such that $e_1, \ldots, e_k \in V'$. Prove that A has the following form in this basis:

$$
\begin{pmatrix}
* & * & * & \ldots & * & * & * \\
: & : & : & \ddots & : & : & : \\
* & * & * & \ldots & * & * & * \\
0 & 0 & 0 & \ldots & * & * & * \\
: & : & : & \ddots & : & : & : \\
0 & 0 & 0 & \ldots & * & * & *
\end{pmatrix}
$$

(lower left rectangle $k \times (n - k)$ is filled with zeroes and other coefficients are arbitrary).
Definition 8.5. Consider an \(n \)-dimensional vector space \(V \). A sequence of subspaces \(0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V \) is called a flag (or a full flag), if \(\dim V_i = i \). The basis \(e_1, \ldots, e_n \) is called adapted to the flag, if \(e_i \in V_i \). We say that a linear operator \(A \in \text{End} \ V \) preserves the flag \(\{V_i\} \), if \(A(V_i) \subset V_i \).

Exercise 8.16 (!). Let \(A \in \text{End} \ V \) be a linear operator. Prove that \(A \) preserves some flag \(\{V_i\} \) iff \(A \) can be represented by an upper-triangular matrix in in a basis \(e_1, \ldots, e_n \) adapted to \(\{V_i\} \).

Exercise 8.17 (!). Let \(V \) be a vector space over an algebraically closed field. Prove that \(A \in \text{End} \ V \) preserves a flag \(0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V \) (and consequently can be represented by an upper-triangular matrix in some basis).

Hint. Take as \(V_1 \) a vector subspace spanned by an eigenvector and apply induction.

Exercise 8.18 (*). Consider an invertible linear operator \(A \in \text{End} \ V \) on an \(n \)-dimensional space that has \(n \) pairwise disjoint eigenvalues. Consider a subalgebra \(R_A \) in \(\text{End} \ V \) generated by \(A \). Prove that \(\dim R_A = n \).

Hint. Use the Vandermonde determinant.

Exercise 8.19 (*). Consider two commuting linear operators. Prove that the can be represented by two upper-triangular matrices in the same basis \(e_1, \ldots, e_n \).

Exercise 8.20 (*). Consider \(l \) pairwise commuting linear operators. Prove that they all can be represented by upper-triangular matrices in the same basis \(e_1, \ldots, e_n \).

Symmetric and skew-symmetric matrices

Definition 8.6. A matrix is called symmetric if it is equal to its transpose: \(A = A^\top \). A matrix is called skew-symmetric, or antisymmetric, if \(A = -A^\top \).

Definition 8.7. Consider a vector space \(V \) together with a non-degenerate bilinear symmetric form \(g \) and a linear operator \(A \in \text{End} \ V \). The operator \(A \) is called symmetric if for any \(x, y \in V \) we have \(g(Ax, y) = g(x, Ay) \); it is called skew-symmetric, if we have \(g(Ax, y) = -g(x, Ay) \).

Definition 8.8. Let \(V \) be a vector space endowed with a non-degenerate bilinear symmetric form \(g \). Recall that a basis \(e_1, \ldots, e_n \) in \(V \) is called orthonormal if \(e_i \)-s are pairwise orthogonal and \(g(e_i, e_i) = 1 \).

Exercise 8.21. Let \(V \) be a vector space endowed with a non-degenerate bilinear symmetric form \(g \) and \(e_1, \ldots, e_n \) be an orthonormal basis. Consider a linear operator \(A \in \text{End} \ V \). Prove that \(A \) is symmetric iff its matrix is symmetric, and antisymmetric iff its matrix is antisymmetric.

Exercise 8.22. Let \(V \) be a finite-dimensional vector space endowed with a bilinear non-degenerate form \(g \). Prove that any bilinear form can be a represented as \(g(Ax, y) \) for some linear operator \(A \) and that such an operator is unique.

Remark. In the previous problem setting assume that \(g \) is symmetric. Obviously, The form \(g(Ax, y) \) is symmetric iff \(A \) is symmetric, and antisymmetric iff \(A \) is antisymmetric.
Exercise 8.23. Let V be a finite-dimensional vector space. The space of bilinear forms is naturally isomorphic to $V^* \otimes V^*$ and the space $\text{End} V$ is naturally isomorphic to $V \otimes V^*$. A form g induces an isomorphism between V and V^*. This gives an isomorphism between $V^* \otimes V^*$ and $V \otimes V^*$, i.e. between the bilinear forms and the linear operators. Prove that this isomorphism coincides with the one constructed in the Problem 8.22.

Exercise 8.24 (!). Let V be a finite-dimensional vector space endowed with non-degenerate bilinear symmetric form g and let A by a symmetric operator. Suppose A preserve the subspace $V' \subset V$. Prove that A preserves the orthogonal complement to V'.

Definition 8.9. Let V be a vector space over \mathbb{R} and $V \otimes \mathbb{C}$ it the tensor product of the latter with \mathbb{C}. Since $\mathbb{C} \cong \mathbb{R} \oplus \sqrt{-1} \mathbb{R}$, there is an isomorphism $V \otimes \mathbb{C} \cong V \oplus \sqrt{-1} V$. That means that one can consider a real $(\text{Re} v)$ and imaginary part $(\text{Im} v)$ of any vector $v \in V \otimes \mathbb{C}$.

Exercise 8.25. Let V be a vector space over \mathbb{R} endowed with a bilinear symmetric form g. Consider a complex vector space $V \otimes \mathbb{C}$ and continue g to $V \otimes \mathbb{C}$ using the linearity of the bilinear complex-valued form. For any vector $v \in V \otimes \mathbb{C}$ denote by \overline{v} the vector $\text{Re}(v) - \sqrt{-1} \text{Im}(v)$ (this vector is called the complex conjugate to v). Prove that $g(v, \overline{v}) = g(\text{Re}(v), \text{Re}(v)) + g(\text{Im}(v), \text{Im}(v))$.

Exercise 8.26 (!). Let V by a finite-dimensional vector space over \mathbb{R} of dimension n endowed with a positive definite bilinear symmetric form g (such space is called Euclidean), and let A be a symmetric operator and $P(t)$ be his characteristic polynomial. Prove that $P(t)$ has exactly n real roots.

Hint. Consider the action of A on $V \otimes \mathbb{C}$, and let v be the eigenvector corresponding to a non-real eigenvalue. Prove that $g(v, \overline{v}) = 0$. Use the Problem 8.25.

Exercise 8.27 (!). Let V be a Euclidean space and $A \in V$ be a symmetric operator. Prove that V has an orthogonal basis of eigenvectors of A. In other words, A is diagonalisable in an orthonormal basis.

Hint. Use the Problems 8.26 and 8.24.

Exercise 8.28 (*). Let V be a finite-dimensional vector space over \mathbb{R} endowed with a non-degenerate but non necessary positive definite bilinear symmetric form. Is any symmetric operator diagonalisable?

Exercise 8.29 (*). Let V be a Euclidean space and $A \in V$ be a skew-symmetric operator. Denote by ω the skew-symmetric form $g(A, \cdot)$. Let v be an eigenvector of the operator A^2 (with a non-zero eigenvalue). Prove that ω is non-degenerate on the linear span $\langle v, A(v) \rangle$.

Exercise 8.30 (*). In the previous problem setting prove that in some orthonormal basis $e_1, \ldots, e_{2m}, e_{2m+1}$ ω is of the form

$$
\sum_{i=0}^{m-1} \alpha_i e_i e_i+1 \wedge e_i+2.
$$

Exercise 8.31 (*). Let A be a skew-symmetric operator defined on a Euclidean space and $\det A$ be its determinant. Consider $\det A$ as a polynomial of matrix coefficients of A in some basis. Prove that in a odd-dimensional space V this determinant polynomial is identically zero. Prove that $\det A$ is a full square of some other polynomial of matrix coefficients. This polynomial is called the Pfaffian of A.

Hint. Let $2m = \dim V$. Consider the bilinear form ω represented in the form above. Prove that ω^m (considered as an element of the Grassmann algebra $\Lambda^* (V^*)$) is proportional to $e^1 \wedge e^2 \wedge \cdots \wedge e^{2m}$ with a polynomial coefficient Q, moreover $Q^2 = \det A$.