Algebra 9: Artinian rings and idempotents

Definition 9.1. Consider a commutative algebra \(R \) with unity over a field \(k \). One says that \(R \) is a finitely generated Artinian ring over the field \(k \) if \(R \) is finite-dimensional as a vector space.

Exercise 9.1. Consider a linear operator \(A \in \text{End} V \). Consider a subalgebra of \(\text{End} V \) generated by \(k \) and \(A \). Prove that this in an Artinian ring over \(k \).

Definition 9.2. An element \(r \in R \) of an algebra (or ring) \(R \) is called nilpotent if \(r^k = 0 \) for some \(k \in \mathbb{N} \).

Exercise 9.2. Let \(r, r' \) be nilpotent elements in an Artinian ring over a field. Prove that any linear combination \(r, r' \) is nilpotent.

Exercise 9.3. Let \(r, r' \) be nilpotent elements in the algebra \(\text{Mat}(V) \). Is \(r + r' \) always nilpotent?

Remark. A nilpotent element in the matrix algebra is called a nilpotent operator.

Exercise 9.4. Let \(A \in \text{End} V \) be a nilpotent operator. Prove that there is a chain of subspaces \(V \supset V_1 \supset V_2 \supset \cdots \supset V_k = 0 \) in \(V \) such that \(A(V_i) = V_{i+1} \).

Exercise 9.5 (!). Consider a nilpotent operator \(A \in \text{End} V \). Prove that in some basis \(A \) has the form:

\[
\begin{pmatrix}
0 & * & * & \cdots & * & * & *
0 & 0 & * & \cdots & * & * & *
0 & 0 & 0 & \cdots & * & * & *
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & * & *
0 & 0 & 0 & \cdots & 0 & 0 & *
0 & 0 & 0 & \cdots & 0 & 0 & 0
\end{pmatrix}
\]

(that is, an upper-triangular matrix with 0 on the diagonal). Prove that any matrix of this form is nilpotent.

Hint. Use the previous problem.

Exercise 9.6 (!). Let \(A \in \text{End} V \) be nilpotent operator. Prove that \(\text{tr}(A) = \det(A) = 0 \) and \(\text{Chpoly}_A(t) = t^{\dim V} \).

Definition 9.3. Let \(R \) be a ring. A subset \(m \subset R \) is called an ideal if the following it has the following properties:

(i) \(m \) is closed under addition (that is, the sum of two elements from \(m \) belongs to \(m \))

(ii) For any \(m \in m, a \in R \) the product \(am \) belongs to \(R \).

Exercise 9.7. Consider a homomorphism of rings \(R \longrightarrow R' \). Prove that the kernel of this homomorphism is an ideal.

Exercise 9.8. Consider a surjective homomorphism \(f : R_1 \rightarrow R_2 \) of algebras over a field \(k \) and let \(R_1 \) be a field. Prove that either \(R_2 = 0 \), or \(f \) is an isomorphism.

Exercise 9.9. Consider an ideal \(m \subset R \). Consider the quotient \(R/m \), that is the set of cosets of the form \(r + m \). Define on \(R/m \) the natural ring structure.
Definition 9.4. A ring \(R/m \) is called a quotient ring of the ring \(R \). An ideal is called prime, if the corresponding quotient ring is non-zero and has no zero divisors. An ideal is called maximal if, moreover, the quotient is a field.

Exercise 9.10. Prove that any prime ideal in an Artinian ring is maximal.

Exercise 9.11 (*). Describe all maximal ideals in the ring of polynomials \(k[t] \).

Exercise 9.12. Consider the set of all nilpotent elements in the ring \(R \). Prove that it is an ideal.

Definition 9.5. This ideal is called the nilradical of the ring \(R \).

Exercise 9.13 (!). Consider the quotient ring \(R/n \) of a ring by its nilradical. Prove that \(R/n \) has no nilpotent elements.

Exercise 9.14. Consider an ideal in an Artinian ring that does not coincide with the whole ring. Prove that it is contained in a maximal one.

Exercise 9.15 (*). Consider an ideal in a ring (not necessary Artinian) that does not coincide with the whole ring. Prove that it is contained in a maximal one.

Hint. Use Zorn’s lemma.

Definition 9.6. An Artinian ring \(R \) is called semisimple, if it does not have non-zero nilpotents.

Definition 9.7. Consider a direct sum \(\oplus R_i \) with the natural (coordinate-wise) multiplication and addition. The resulting algebra is called the direct sum of \(R_i \) and is denoted \(\oplus R_i \) too.

Exercise 9.16. Prove that the direct sum of semisimple Artinian rings is semisimple.

Exercise 9.17. Let \(v \) be an element of a finite-dimensional algebra \(R \) over \(k \). Consider a subspace \(R \) generated by \(1, v, v^2, v^3, \ldots \) (for all powers of \(v \)). Supposed this space has dimension \(n \). Prove that \(P(v) = 0 \) for some polynomial \(P = t^{n+1} + a_n t^n + \ldots \) with coefficients in \(k \). Prove that this polynomial is unique.

Definition 9.8. This polynomial is called the minimal polynomial of the element \(v \) and is denoted \(\text{Minpoly}(v) \).

Exercise 9.18. Let \(v \in R \) be an element of an Artinian ring over \(k \), and \(P(t) \) be its minimal polynomial. \(R_v, v k, R_v k[t]/P P \).

Definition 9.9. Let \(v \in R \) be an element of an algebra \(R \) such that \(v^2 = v \). Then \(v \) is called an idempotent.

Exercise 9.19. Let \(e \in R \) be an idempotent in a ring. Prove that \(1 - e \) is an idempotent too. Prove that a product of idempotents is and idempotent.

Exercise 9.20. Let \(e \in R \) be an idempotent in a ring. Consider the space \(eR \subset R \) (the image of the multiplication by \(e \)). Prove that \(eR \) is a subalgebra in \(R \), that \(e \) is an identity in \(eR \), and that \(R = eR \oplus (1 - e)R \).

Exercise 9.21 (!). Let \(R = k(t)/P \) where \(P \) is a polynomial that decomposes into a product of pairwise co-prime polynomials \(P = P_1 P_2 \ldots P_n \). Prove that \(R \) has \(m \) idempotents \(e_1, \ldots, e_n \subset R \), and that \(e_i R \cong k[t]/P_i \).
Hint. Find polynomials $Q(t)$, $Q'(t)$ such that $QP_1 + Q'P_1P_3 \ldots P_n = 1$. Let $e = Q'P_1P_3 \ldots P_n$. Prove that $e^2 = e(\mod P)$, $eP_1(t) = 0(\mod P)$. Deduce that $k[z]/P(z) \cong eR$, and the isomorphism is given by $z \mapsto et$.

Exercise 9.22. Let R be a semisimple Artinian ring without non-identity idempotents. Prove that it is a field.

Hint. Let R be a field. Consider the subalgebra $k(x) \subset R$ generated by a non-invertible element $x \in R$, and apply the previous problem.

Definition 9.10. Two idempotents $e_1, e_2 \in R$ in a commutative algebra R are called orthogonal if $e_1e_2 = 0$.

Exercise 9.23. Let $e_1, e_2, e_3 \in R$ be idempotents in an Artinian ring R over a field k and let $e_1 = e_2 + e_3$, let e_2 and e_3 be orthogonal. Prove that $e_2, e_3 \in e_1R$ and $e_1R = e_2R \oplus e_3R$.

Exercise 9.24. Let $\text{char} k \neq 2$. Suppose that e_1, e_2, e_3 be idempotents in an Artinian ring R over a ring k and $e_1 = e_2 + e_3$. Prove that e_2 and e_3 are orthogonal.

Definition 9.11. Let R be an Artinian ring over a field k. An idempotent e in R is called indecomposable if there are no such non-zero orthogonal idempotents e_2, e_3 such that $e_1 = e_2 + e_3$.

Exercise 9.25 (!). Let R be a semisimple Artinian ring and e be an indecomposable idempotent. Prove that eR is a ring.

Exercise 9.26 (!). Let R be a semisimple Artinian ring over a field k. Prove that 1 decomposes into a sum of indecomposable orthogonal idempotents: $1 = \sum e_i$. Prove that this decomposition is unique.

Hint. For existence take some idempotent $e \in R$ and decompose $R = eR \oplus (1 - e)R$ then use induction. For uniqueness, consider the product of two possible decompositions of 1.

Exercise 9.27 (!). Let R be a semisimple Artinian ring over a ring k. Prove that R is isomorphic to a direct sum of fields.

Hint. Use the previous problem.

Exercise 9.28 (!). Let $R_1 \xrightarrow{\psi} R_2$ be a surjective homomorphism of Artinian rings, moreover, let R_1 be semisimple and thus decomposed into a direct sum of fields over some set of indices I, $R_1 = \bigoplus_{i \in I} K_i$. Prove that $R_2 = \bigoplus_{i \in I'} K_i$, where I' is some subset of I and ψ is the natural projection (that is, ψ acts identically on K_i, $i \in I'$ and is zero on K_i, $i \notin I'$).

Hint. Decompose $1 \in R_1$ into the sum of indecomposable idempotents e_i, $i \in I$, prove that $f : e_iR \rightarrow f(e_i)R_2$ is surjective for all $i \in I$, and apply Problem 9.8.

Exercise 9.29 (*). Let $R = k[t]/P$ and the polynomial P has multiple roots over the algebraic closure \overline{k}. Can R be semisimple? Analyse the cases $\text{char} k = 0$, $\text{char} k \neq 0$.

Exercise 9.30 (*). Let R be a semisimple Artinian ring over a field k, and $1 = e_1 + \cdots + e_n$ be the decomposition of 1 into the sum of indecomposable orthogonal idempotents. Prove that R has exactly n prime ideals. Describe these ideals in terms of e_i.

3
Exercise 9.31 (*). Let R be an Artinian ring over a field k (of any characteristic). Prove that the intersection of all simple ideals R is the nilradical of R.

Definition 9.12. Let R be an algebra over a field k, and g be a bilinear form on R. The form g is called invariant, if $g(x, yz) = g(xy, z)$ for any x, y, z.

Exercise 9.32. Let R be an Artinian ring endowed with a bilinear invariant form, and m be an ideal in R. Prove that m^\perp is an ideal too.

Exercise 9.33 (*). Find an Artinian ring that does not admit a non-degenerate invariant bilinear form.

Exercise 9.34 (!). Let R be an Artinian ring over a field k. Consider a the bilinear form $a, b \rightarrow \text{tr}(ab)$, where $\text{tr}(ab)$ is the trace of the endomorphism $L_{ab} \in \text{End} R, x \mapsto abx$. Prove that if this form is non-degenerate then R is semisimple. Prove that if R is semisimple and $\text{char} k = 0$ then the form is non-degenerate.

Hint. One direction can be proved using the Problem 9.6. For the other direction consider first the case when R is a field.

Exercise 9.35. Let V, V' be vector spaces over k endowed with bilinear forms g, g'. Define on $V \otimes V'$ the bilinear form $g \otimes g'$ that would satisfy

$$g \otimes g'(v \otimes v', w \otimes w') = g(v, w)g'(v', w')$$

Prove that the bilinear form on $V \otimes V'$ is well-defined and unique.

Exercise 9.36. Let R, R' be commutative algebras over k. Consider a tensor product $R \otimes R'$. Endow $R \otimes R'$ with a multiplicative structure such that $v \otimes v' \cdot w \otimes w = vw \otimes v'w'$. Prove that the ring structure on $R \otimes R'$ is well-defined and unique.

Exercise 9.37. Describe the algebra $\mathbb{C} \otimes_\mathbb{R} \mathbb{C}$.

Exercise 9.38. Describe the algebra $\mathbb{Q}[\sqrt{-1}] \otimes_\mathbb{Q} \mathbb{Q}[\sqrt{-1}]$.

and apply the problem

Exercise 9.39 (!). Let $P(t)$ and $Q(t)$ be polynomials over a field k. Denote $K_1 = k[t]/P(t)$ and $K_2 = k[t]/Q(t)$. Prove that $K_1 \otimes K_2 \cong K_1[t]/Q(t) \cong K_2[t]/P(t)$.

Exercise 9.40 (*). Let R, R' be Artinian rings over $k, \text{char} k = 0$. Denote the natural bilinear forms $a, b \rightarrow \text{tr}(ab)$ on these rings by g, g'. Consider the tensor product $R \otimes R'$ with the natural structure of Artinian algebra. Consider the form $g \otimes g'$ on $R \otimes R'$. Prove that $g \otimes g'$ is equal to the form $a, b \rightarrow \text{tr}(ab)$.

Exercise 9.41 (*). Prove that the tensor product of semisimple Artinian rings over a field k of characteristic 0 is semisimple.

Hint. Use the Problem 9.34.

Exercise 9.42 (*). Find two fields K_1, K_2, algebraic over but not equal to \mathbb{Q}, such that $K_1 \otimes_{\mathbb{Q}} K_2$ is also a field.
Exercise 9.43 (*). Let $P(t) \in \mathbb{Q}[t]$ be a polynomial that does not have rational roots but has exactly r real and $2s$ complex roots (that are non-real). Prove that

$$(\mathbb{Q}[t]/P) \otimes_{\mathbb{Q}} \mathbb{R} = \bigoplus_s \mathbb{C} \oplus \bigoplus_r \mathbb{R}.$$

Exercise 9.44 (*). Let $P(t)$ be an irreducible polynomial over \mathbb{Q} that does not have real roots and $v \in \mathbb{Q}[t]/P$ be an element that does not belong to $\mathbb{Q} \subset \mathbb{Q}[t]/P$. Prove that the minimal polynomial of v does not have real roots.