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You are supposed to know the definition of a linear space and dot product (i.e. a positive bilinear
symmetric form). Consult ALGEBRA 3.

Metric spaces, convex sets, norm

Definition 3.1. A metric space is a set X equipped with a function d : X ×X → R such that

a. d(x, y) > 0 for all x 6= y ∈ X; moreover, d(x, x) = 0.

b. Symmetry: d(x, y) = d(y, x)

c. “Triangle inequality”: for all x, y, z ∈ X,

d(x, z) 6 d(x, y) + d(y, z).

A function d which satisfies these conditions is called metric. The number d(x, y) is called “distance
between x and y”.

If x ∈ X is a point and ε is a real number then the set

Bε(x) = {y ∈ X | d(x, y) < ε

is called an (open) ball of radius ε with the center in x. Such ball can be called as well an
ε-ball. A closed ball is defined as follows

Bε(x) = {y ∈ X | d(x, y) 6 ε.

Exercise 3.1. Consider any subset of a Euclidean plane R2 and the function d defined as d(a, b) =
|ab| where |ab| is the length of a segment [a, b] on the plane. Prove that this defines a metric space.

Exercise 3.2. Consider the function d∞ : R2 × R2 → R:

(x, y), (x′, y′) 7→ max(|x− x′|, |y − y′|).

Prove that this is a metric. Describe a unit ball with the center in zero.

Exercise 3.3. Consider a function d1 : R2 × R2 → R:

(x, y), (x′, y′) 7→ |x− x′|+ |y − y′|.

Prove that this is a metric. Describe a unit ball with the center in zero.

Exercise 3.4 (*). A function f : [0,∞[→ [0,∞[ is said to be upper convex if f(ax+by
a+b

) >
af(x)+bf(y)

a+b
, for any positive a, b ∈ R. Let f be such a function and (X, d) be a metric space.

Suppose that f(λ) = 0 iff λ = 0. Prove that the function df (x, y) = f(d(x, y)) defines a metric on
X.

Exercise 3.5. Let V be a linear space with a positive bilinear symmetric form g(x, y) (in what
follows we will call that form a dot product). Define the “distance” dg : V × V → R as

dg(x, y) =
√

g(x− y, x− y). Prove that d(x, y) > 0 where equality holds iff x = y.
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Definition 3.2. Let x ∈ V be a vector from a vector space V . Parallel transport along vector
x is a mapping Px : V → V , y 7→ y + x.

Exercise 3.6. Prove that a function dg is “invariant with respect to parallel transports”, i.e.
dg(a, b) = dg(Px(a), Px(b)).

Exercise 3.7. Prove that if y 6= 0, then dg satisfies the triangle inequality:√
g(x− y, x− y) 6

√
g(x, x) +

√
g(y, y)

Hint. Consider a two-dimensional subspace V0 ⊂ V , generated by x and y. Prove that it is
isomorphic (as a space with dot product) to the space R2 with dot product g((x, y), (x′, y′)) =
xx′ + yy′. Use the triangle inequality for R2.

Exercise 3.8 (!). Prove that dg satisfies the triangle inequality.

Hint. Use invariance of parallel transports and reduce to the previous problem.

Definition 3.3. Consider a vector space V with a dot product g, and let dg be the metric con-
structed above. This metric is called a euclidean metric.

Definition 3.4. Consider a vector space V , a parallel transport Px : V → V and a one-
dimensional subspace V1 ⊂ V . Then the image Px(V1) is called a line in V .

Exercise 3.9. Consider two different points in x, y ∈ V . Prove that there exists a unique line Vx,y

through x and y.

Definition 3.5. Consider a line l through points x and y, and a point a on l. We say that a lies
between x and y, if d(x, a)+d(b, y) = d(x, y). A line segment between x and y (denoted [x, y])
is the set of all points belonging to the line Vx,y, that “lie between” x and y.

Exercise 3.10. consider three different points on a line. Prove that one (and only one) of these
points lies between two other points. Prove that the line segment [x, y] is a set of all points z of
the form ax + (1− a)y, where a ∈ [0, 1] ⊂ R.

Definition 3.6. Consider a vector space V , and let B ⊂ V be its subset. We say that B is convex
if B contains all points of the line segment [x, y] for any x, y ∈ V .

Definition 3.7. Let V be a vector space over R. A norm on V is a function ρ : V → R, such
that the following hold:

a. For any v ∈ V one has ρ(v) > 0. Moreover, ρ(v) > 0 for all nonzero v.

b. ρ(λv) = |λ|ρ(v)

c. For any v1, v2 ∈ V one has ρ(v1 + v2) 6 ρ(v1) + ρ(v2).

Exercise 3.11. Consider a vector space V over R, and let ρ : V → R be a norm on V . Consider
the function dρ : V × V → R, dρ(x, y) = ρ(x− y). Prove that this is a metric on V .

Exercise 3.12 (*). Let d : V ×V → R be a metric on V , invariant w.r.t. the parallel transports.
Suppose that d satisfies

d(λx, λy) = |λ|d(x, y)

for all λ ∈ R. Prove that d can be obtained from the norm ρ : V → R by using the formula
d(x, y) = ρ(x− y).
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Exercise 3.13. Let V be a linear space over R and ρ : V → R be a norm on V . Consider the set
B1(0) of all points with the norm 6 1. Prove that this set is convex.

Definition 3.8. Consider a vector space V over R and let v be a nonzero vector. Then the set of
all vectors of the form {λv | λ > 0} is called a half-line (or a ray) in V .

Definition 3.9. A central symmetry in V is the mapping x 7→ −x.

Exercise 3.14 (*). Consider a central symmetric convex set B ⊂ V that does not contain any
half-lines and has an intersection with any half-line {λv | λ > 0}. Consider the function ρ

v
ρ7→ inf{λ ∈ R>0 | λv /∈ B}

Prove that this is a norm on V . Prove that all the norms can be obtained that way.

Exercise 3.15. Consider an abelian group G and a function ν : G → R satisfying ν(g) > 0 for
all g ∈ G, and ν(g) > 0 whenever g 6= 0. Suppose that ν(a + b) 6 ν(a) + ν(b), ν(0) = 0 and that
ν(g) = ν(−g) for all g ∈ G. Prove that the function dν : G × G → R, dν(x, y) = ν(x − y) is a
metric on G.

Exercise 3.16. A metric d on an abelian group G is called an invariant metric if d(x+g, y+g) =
d(x, y) for all x, y, g ∈ G. Prove that any invariant metric d is obtained from a function ν : G → R
by setting d(x, y) = ν(x− y).

Definition 3.10. Fix a prime number p ∈ Z. The function νp : Z → R, which given a number
n = pkr (r is not divisible by p) yields p−k, and satisfies νp(0) = 0, is called the p-adic norm on
Z.

Exercise 3.17. Prove that the function dp(m, n) = νp(n−m) defines a metric on Z. This metric
is called p-adic metric on Z.

Hint. Check that νp(a + b) 6 ν(a) + ν(b) holds and use the previous problem.

Definition 3.11. Let R be a ring and ν : R → R be a function that is positive and yields strictly
positive values for all nonzero r. Suppose that ν(r1r2) = ν(r1)ν(r2) and ν(r1 + r2) 6 ν(r1) + ν(r2).
Then ν is called a norm on R. A ring endowed with a norm is called a normed ring.

Remark. It follows from the problems above that a norm on a ring R defines an invariant metric
on R. In what follows any normed ring will be regarded as a metric space.

Exercise 3.18. Prove that νp is a norm on a ring Z. Define a norm on Q that extends νp.

Complete metric spaces.

Definition 3.12. Let (X, d) be a metric space and {ai} be a sequence of point from X. A sequence
{ai} is called a Cauchy sequence, if for every ε > 0 there exists an ε-ball in X which contains all
but a finite number of ai.

Exercise 3.19. Let {ai}, {bi} be Cauchy sequences in X. Prove that {d(ai, bi)} is a Cauchy
sequence in R.
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Definition 3.13. Let (X, d) be a metric space and {ai}, {bi} be Cauchy sequences in X. Sequences
{ai} and {bi} are called equivalent, if the sequence a0, b0, a1, b1, . . . is a Cauchy sequence.

Exercise 3.20. Let {ai}, {bi} be Cauchy sequences in X. Prove that {ai}, {bi} are equivalent iff
lim
i→∞

d(ai, bi) = 0.

Exercise 3.21. Let {ai}, {bi} be equivalent Cauchy sequences in X, and {ci} be another Cauchy
sequence. Prove that

lim
i→∞

d(ai, ci) = lim
i→∞

d(bi, ci)

Exercise 3.22 (!). Let (X, d) be a metric space and X be the set of equivalence classes of Cauchy
sequences. Prove that the function

{ai}, {bi} 7→ lim
i→∞

d(ai, bi)

defines a metric on X.

Definition 3.14. In that case, X is called the completion of X.

Exercise 3.23. Consider a natural mapping X → X, x 7→ {x, x, x, x, ...}. Prove that it is an
injection which preserves the metric.

Definition 3.15. Let A be a subset of X. An element c ∈ X is called an accumulation point
(limit point) of a set A if any open ball containing c contains an infinite number of elements of
A.

Exercise 3.24. Prove that a Cauchy sequence cannot have more than one accumulation point.

Definition 3.16. Let {ai} be a Cauchy sequence. It is said that {ai} converges to x ∈ X, or
that {ai} has the limit x (denoted as lim

i→∞
ai = x), if x is an accumulation point of {ai}

Definition 3.17. A metric space (X, d) is called complete if any Cauchy sequence in X has a
limit.

Exercise 3.25 (!). Prove that the completion of a metric space is complete.

Definition 3.18. A subset A ⊂ X of a metric space is called dense if any open ball in X contains
an element from A.

Exercise 3.26. Prove that X is dense in its completion X.

Exercise 3.27 (*). Let X be a metric space and consider a metric preserving mapping j : X → Z
from X into a complete metric space Z. Prove that j can be uniquely extended to j : X → Z.

Remark. This problem can be used as a definition of X. The definition 3.14 then becomes a
theorem.

Exercise 3.28 (!). Let R be a ring endowed with a norm ν. Define addition and multiplication
on the completion of R with respect to the metric corresponding to ν. Prove that R has a norm
that extends the norm ν on R.
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Definition 3.19. The normed ring R is called the completion of R with respect to the norm
ν.

Exercise 3.29 (*). Let R be a normed ring and R be its completion. Suppose that R is a field.
Prove that R is also a field.

Exercise 3.30 (*). Let R be a ring without zero divisors (i.e. it satisfies the following property:
if r1, r2 are nonzero elements, then r1r2 is also non-zero). Consider a function ν : R → R which
maps all non-zero elements of R to unity and maps zero to zero. Prove that ν is a norm. What is
R?

Exercise 3.31. Prove that R can be obtained as the completion of Q with respect to the norm
q 7→ |q|. Can this statement be used as a definition of R?

Definition 3.20. The completion of Z with respect to the norm νp is called the ring of integer
p-adic numbers. This ring is denoted by Zp.

Exercise 3.32. Let (X, d) be a metric space and {ai} be a sequence of points in X. Suppose that
the series

∑
d(ai, ai−1) converges. Prove that {ai} is a Cauchy sequence. Is the converse true?

Exercise 3.33 (!). Prove that for any sequence of integer numbers ak the series
∑

akp
k converges

in Zp.

Hint. Use the previous problem.

Exercise 3.34. Prove that (1− p)(
∑∞

k=0 pk) = 1 in Zp.

Exercise 3.35 (*). Prove that any integer number which is not divisible by p is invertible in Zp.

Definition 3.21. The completion of Q with respect to the norm obtained by extension of νp, is
denoted by Qp and is called the field of p-adic numbers.

Exercise 3.36 (*). Take x ∈ Qp. Prove that x = x′

pk , where x′ ∈ Zp.

Exercise 3.37 (*). Prove that lim
n→∞

n
√

n = 1.

Definition 3.22. A norm ν on a ring R is called non-Archimedean, if ν(x+y) 6 max(ν(x), ν(y))
for all x, y. Otherwise the norm is called Archimedean.

Exercise 3.38 (*). Let ν be a norm on Q. Prove that ν is non-Archimedean iff Z is contained in
the unit ball.

Hint. Use the following equality: lim
n→∞

n
√

n = 1. Find an estimate of n
√

((ν(x + y)n) for big n using

the estimate of binomial coefficients: ν(
(

k
n

)
) 6 1.

Exercise 3.39 (*). Let ν be a non-Archimedean norm on Q. Consider m ⊂ Z consisting of all
integers n such that ν(n) < 1. Prove that m is an ideal in Z (ideal in a ring R is a subset which is
closed under addition and multiplication by elements of R). Prove that the ideal

m = {n ∈ Z | ν(n) < 1}

is prime (prime ideal is an ideal such that xy /∈ m for all x, y /∈ m).
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Exercise 3.40 (*). Prove that any ideal in Z is of the form {0,±1m,±2m,±3m, ...} for some
m ∈ Z. Prove that any prime ideal m in Z is of the form {0,±p,±2p,±3p, ...}, where p = 0 or p
prime.

Hint. Use the Euclid’s Algorithm.

Exercise 3.41 (*). Let ν be a non-Archimedean norm Q and m = {p, 2p, 3p, 4p, ...} be an ideal
constructed above. Prove that there exists a real number λ > 1 such that ν(n) = λ−k for any

n = pkr, r 6 ...p.

Exercise 3.42 (*). Let ν be a norm on Q such that ν(2) 6 1. Prove that ν(a) < log2(a) + 1 for
any integer a > 0.

Hint. Use the binary representation of a number.

Exercise 3.43 (*). Let ν be a norm on Q such that ν(2) < 1. Prove that ν(a) 6 1 for any integer
a > 0 (i.e. ν is non-Archimedean).

Hint. Deduce from lim
n→∞

n
√

n = 1 that lim
n→∞

log n
n

= 0. Prove lim
N→∞

ν(aN) 6 1, using the previous

problem.

Exercise 3.44 (*). Let ai be a Cauchy sequence of rational numbers of the form x
2n (“Cauchy

sequence” here means the same thing as Cauchy sequence of real numbers). Suppose that a norm
ν on Q is Archimedean. Prove that ν(ai) is a Cauchy sequence.

Hint. Write down x in the binary system and prove that

ν(x/2n) 6 ν(2)log2(x)+1/ν(2)n 6 ν(2)log2 |x+1/2n|.

Exercise 3.45 (*). Deduce that ν can be extended to a continuous function on R, which satisfies
ν(xy) = ν(x)ν(y). Prove that ν can be obtained as x 7→ |x|λ for some constant λ > 0. Express λ
in terms of ν(2).

Exercise 3.46 (*). For which λ > 0 the function x 7→ |x|λ defines a norm on Q?

We have obtained a complete classification of norms on Q: any norm can be obtained as a
power of either a p-adic norm or the absolute value norm. This classification is called Ostrovsky
theorem.
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