GEOMETRY 3: Metric spaces and norm

You are supposed to know the definition of a linear space and dot product (i.e. a positive bilinear symmetric form). Consult ALGEBRA 3.

Metric spaces, convex sets, norm

Definition 3.1. A metric space is a set X equipped with a function $d: X \times X \to \mathbb{R}$ such that

- a. d(x,y) > 0 for all $x \neq y \in X$; moreover, d(x,x) = 0.
- b. Symmetry: d(x, y) = d(y, x)
- c. "Triangle inequality": for all $x, y, z \in X$,

$$d(x,z) \leqslant d(x,y) + d(y,z).$$

A function d which satisfies these conditions is called **metric**. The number d(x, y) is called "distance between x and y".

If $x \in X$ is a point and ε is a real number then the set

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x,y) < \varepsilon \}$$

is called an **(open)** ball of radius ε with the center in x. Such ball can be called as well an ε -ball. A closed ball is defined as follows

$$\overline{B}_{\varepsilon}(x) = \{ y \in X \mid d(x, y) \leqslant \varepsilon. \}$$

Exercise 3.1. Consider any subset of a Euclidean plane \mathbb{R}^2 and the function d defined as d(a,b) = |ab| where |ab| is the length of a segment [a,b] on the plane. Prove that this defines a metric space.

Exercise 3.2. Consider the function $d_{\infty}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$:

$$(x,y), (x',y') \mapsto \max(|x-x'|, |y-y'|).$$

Prove that this is a metric. Describe a unit ball with the center in zero.

Exercise 3.3. Consider a function $d_1: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$:

$$(x,y), (x',y') \mapsto |x-x'| + |y-y'|.$$

Prove that this is a metric. Describe a unit ball with the center in zero.

Exercise 3.4 (*). A function $f: [0,\infty[\to [0,\infty[$ is said to be **upper convex** if $f(\frac{ax+by}{a+b}) \geqslant \frac{af(x)+bf(y)}{a+b}$, for any positive $a, b \in \mathbb{R}$. Let f be such a function and (X,d) be a metric space. Suppose that $f(\lambda) = 0$ iff $\lambda = 0$. Prove that the function $d_f(x,y) = f(d(x,y))$ defines a metric on X.

Exercise 3.5. Let V be a linear space with a positive bilinear symmetric form g(x,y) (in what follows we will call that form a **dot product**). Define the "distance" $d_g: V \times V \to \mathbb{R}$ as $d_g(x,y) = \sqrt{g(x-y,x-y)}$. Prove that $d(x,y) \ge 0$ where equality holds iff x = y.

Definition 3.2. Let $x \in V$ be a vector from a vector space V. **Parallel transport along vector** x is a mapping $P_x: V \to V$, $y \mapsto y + x$.

Exercise 3.6. Prove that a function d_g is "invariant with respect to parallel transports", i.e. $d_q(a,b) = d_q(P_x(a), P_x(b))$.

Exercise 3.7. Prove that if $y \neq 0$, then d_g satisfies the triangle inequality:

$$\sqrt{g(x-y,x-y)} \leqslant \sqrt{g(x,x)} + \sqrt{g(y,y)}$$

Hint. Consider a two-dimensional subspace $V_0 \subset V$, generated by x and y. Prove that it is isomorphic (as a space with dot product) to the space \mathbb{R}^2 with dot product g((x,y),(x',y')) = xx' + yy'. Use the triangle inequality for \mathbb{R}^2 .

Exercise 3.8 (!). Prove that d_g satisfies the triangle inequality.

Hint. Use invariance of parallel transports and reduce to the previous problem.

Definition 3.3. Consider a vector space V with a dot product g, and let d_g be the metric constructed above. This metric is called a **euclidean** metric.

Definition 3.4. Consider a vector space V, a parallel transport $P_x: V \to V$ and a one-dimensional subspace $V_1 \subset V$. Then the image $P_x(V_1)$ is called a **line** in V.

Exercise 3.9. Consider two different points in $x, y \in V$. Prove that there exists a unique line $V_{x,y}$ through x and y.

Definition 3.5. Consider a line l through points x and y, and a point a on l. We say that a lies **between** x and y, if d(x, a) + d(b, y) = d(x, y). A **line segment between** x **and** y (denoted [x, y]) is the set of all points belonging to the line $V_{x,y}$, that "lie between" x and y.

Exercise 3.10. consider three different points on a line. Prove that one (and only one) of these points lies between two other points. Prove that the line segment [x, y] is a set of all points z of the form ax + (1 - a)y, where $a \in [0, 1] \subset \mathbb{R}$.

Definition 3.6. Consider a vector space V, and let $B \subset V$ be its subset. We say that B is **convex** if B contains all points of the line segment [x, y] for any $x, y \in V$.

Definition 3.7. Let V be a vector space over \mathbb{R} . A **norm** on V is a function $\rho: V \to \mathbb{R}$, such that the following hold:

- a. For any $v \in V$ one has $\rho(v) \ge 0$. Moreover, $\rho(v) > 0$ for all nonzero v.
- b. $\rho(\lambda v) = |\lambda| \rho(v)$
- c. For any $v_1, v_2 \in V$ one has $\rho(v_1 + v_2) \leq \rho(v_1) + \rho(v_2)$.

Exercise 3.11. Consider a vector space V over \mathbb{R} , and let $\rho: V \to \mathbb{R}$ be a norm on V. Consider the function $d_{\rho}: V \times V \to \mathbb{R}$, $d_{\rho}(x,y) = \rho(x-y)$. Prove that this is a metric on V.

Exercise 3.12 (*). Let $d: V \times V \to \mathbb{R}$ be a metric on V, invariant w.r.t. the parallel transports. Suppose that d satisfies

$$d(\lambda x, \lambda y) = |\lambda| d(x, y)$$

for all $\lambda \in \mathbb{R}$. Prove that d can be obtained from the norm $\rho : V \to \mathbb{R}$ by using the formula $d(x,y) = \rho(x-y)$.

Exercise 3.13. Let V be a linear space over \mathbb{R} and $\rho: V \to \mathbb{R}$ be a norm on V. Consider the set $B_1(0)$ of all points with the norm ≤ 1 . Prove that this set is convex.

Definition 3.8. Consider a vector space V over \mathbb{R} and let v be a nonzero vector. Then the set of all vectors of the form $\{\lambda v \mid \lambda > 0\}$ is called a **half-line** (or a **ray**) in V.

Definition 3.9. A central symmetry in V is the mapping $x \mapsto -x$.

Exercise 3.14 (*). Consider a central symmetric convex set $B \subset V$ that does not contain any half-lines and has an intersection with any half-line $\{\lambda v \mid \lambda > 0\}$. Consider the function ρ

$$v \stackrel{\rho}{\mapsto} \inf\{\lambda \in \mathbb{R}^{>0} \mid \lambda v \notin B\}$$

Prove that this is a norm on V. Prove that all the norms can be obtained that way.

Exercise 3.15. Consider an abelian group G and a function $\nu: G \to \mathbb{R}$ satisfying $\nu(g) \geqslant 0$ for all $g \in G$, and $\nu(g) > 0$ whenever $g \neq 0$. Suppose that $\nu(a+b) \leqslant \nu(a) + \nu(b)$, $\nu(0) = 0$ and that $\nu(g) = \nu(-g)$ for all $g \in G$. Prove that the function $d_{\nu}: G \times G \to \mathbb{R}$, $d_{\nu}(x,y) = \nu(x-y)$ is a metric on G.

Exercise 3.16. A metric d on an abelian group G is called an **invariant** metric if d(x+g,y+g) = d(x,y) for all $x,y,g \in G$. Prove that any invariant metric d is obtained from a function $\nu: G \to \mathbb{R}$ by setting $d(x,y) = \nu(x-y)$.

Definition 3.10. Fix a prime number $p \in \mathbb{Z}$. The function $\nu_p : \mathbb{Z} \to \mathbb{R}$, which given a number $n = p^k r$ (r is not divisible by p) yields p^{-k} , and satisfies $\nu_p(0) = 0$, is called the p-adic norm on \mathbb{Z} .

Exercise 3.17. Prove that the function $d_p(m,n) = \nu_p(n-m)$ defines a metric on \mathbb{Z} . This metric is called *p*-adic metric on \mathbb{Z} .

Hint. Check that $\nu_p(a+b) \leq \nu(a) + \nu(b)$ holds and use the previous problem.

Definition 3.11. Let R be a ring and $\nu: R \to \mathbb{R}$ be a function that is positive and yields strictly positive values for all nonzero r. Suppose that $\nu(r_1r_2) = \nu(r_1)\nu(r_2)$ and $\nu(r_1 + r_2) \le \nu(r_1) + \nu(r_2)$. Then ν is called a **norm** on R. A ring endowed with a norm is called a **normed ring**.

Remark. It follows from the problems above that a norm on a ring R defines an invariant metric on R. In what follows any normed ring will be regarded as a metric space.

Exercise 3.18. Prove that ν_p is a norm on a ring \mathbb{Z} . Define a norm on \mathbb{Q} that extends ν_p .

Complete metric spaces.

Definition 3.12. Let (X, d) be a metric space and $\{a_i\}$ be a sequence of point from X. A sequence $\{a_i\}$ is called a **Cauchy sequence**, if for every $\varepsilon > 0$ there exists an ε -ball in X which contains all but a finite number of a_i .

Exercise 3.19. Let $\{a_i\}$, $\{b_i\}$ be Cauchy sequences in X. Prove that $\{d(a_i,b_i)\}$ is a Cauchy sequence in \mathbb{R} .

Definition 3.13. Let (X, d) be a metric space and $\{a_i\}$, $\{b_i\}$ be Cauchy sequences in X. Sequences $\{a_i\}$ and $\{b_i\}$ are called **equivalent**, if the sequence $a_0, b_0, a_1, b_1, \ldots$ is a Cauchy sequence.

Exercise 3.20. Let $\{a_i\}$, $\{b_i\}$ be Cauchy sequences in X. Prove that $\{a_i\}$, $\{b_i\}$ are equivalent iff $\lim_{i\to\infty} d(a_i,b_i)=0$.

Exercise 3.21. Let $\{a_i\}$, $\{b_i\}$ be equivalent Cauchy sequences in X, and $\{c_i\}$ be another Cauchy sequence. Prove that

$$\lim_{i \to \infty} d(a_i, c_i) = \lim_{i \to \infty} d(b_i, c_i)$$

Exercise 3.22 (!). Let (X, d) be a metric space and \overline{X} be the set of equivalence classes of Cauchy sequences. Prove that the function

$$\{a_i\}, \{b_i\} \mapsto \lim_{i \to \infty} d(a_i, b_i)$$

defines a metric on \overline{X} .

Definition 3.14. In that case, \overline{X} is called the **completion of** X.

Exercise 3.23. Consider a natural mapping $X \to \overline{X}$, $x \mapsto \{x, x, x, x, ...\}$. Prove that it is an injection which preserves the metric.

Definition 3.15. Let A be a subset of X. An element $c \in X$ is called an **accumulation point** (limit point) of a set A if any open ball containing c contains an infinite number of elements of A.

Exercise 3.24. Prove that a Cauchy sequence cannot have more than one accumulation point.

Definition 3.16. Let $\{a_i\}$ be a Cauchy sequence. It is said that $\{a_i\}$ converges to $x \in X$, or that $\{a_i\}$ has the limit x (denoted as $\lim_{i \to \infty} a_i = x$), if x is an accumulation point of $\{a_i\}$

Definition 3.17. A metric space (X, d) is called **complete** if any Cauchy sequence in X has a limit.

Exercise 3.25 (!). Prove that the completion of a metric space is complete.

Definition 3.18. A subset $A \subset X$ of a metric space is called **dense** if any open ball in X contains an element from A.

Exercise 3.26. Prove that X is dense in its completion \overline{X} .

Exercise 3.27 (*). Let X be a metric space and consider a metric preserving mapping $j: X \to Z$ from X into a complete metric space Z. Prove that j can be uniquely extended to $\overline{j}: \overline{X} \to Z$.

Remark. This problem can be used as a definition of \overline{X} . The definition 3.14 then becomes a theorem.

Exercise 3.28 (!). Let R be a ring endowed with a norm ν . Define addition and multiplication on the completion of R with respect to the metric corresponding to ν . Prove that \overline{R} has a norm that extends the norm ν on R.

Definition 3.19. The normed ring \overline{R} is called the completion of R with respect to the norm ν .

Exercise 3.29 (*). Let R be a normed ring and \overline{R} be its completion. Suppose that R is a field. Prove that \overline{R} is also a field.

Exercise 3.30 (*). Let R be a ring without zero divisors (i.e. it satisfies the following property: if r_1 , r_2 are nonzero elements, then r_1r_2 is also non-zero). Consider a function $\nu: R \to \mathbb{R}$ which maps all non-zero elements of R to unity and maps zero to zero. Prove that ν is a norm. What is \overline{R} ?

Exercise 3.31. Prove that \mathbb{R} can be obtained as the completion of \mathbb{Q} with respect to the norm $q \mapsto |q|$. Can this statement be used as a definition of \mathbb{R} ?

Definition 3.20. The completion of \mathbb{Z} with respect to the norm ν_p is called the **ring of integer** p-adic numbers. This ring is denoted by \mathbb{Z}_p .

Exercise 3.32. Let (X, d) be a metric space and $\{a_i\}$ be a sequence of points in X. Suppose that the series $\sum d(a_i, a_{i-1})$ converges. Prove that $\{a_i\}$ is a Cauchy sequence. Is the converse true?

Exercise 3.33 (!). Prove that for any sequence of integer numbers a_k the series $\sum a_k p^k$ converges in Z_p .

Hint. Use the previous problem.

Exercise 3.34. Prove that $(1-p)(\sum_{k=0}^{\infty} p^k) = 1$ in \mathbb{Z}_p .

Exercise 3.35 (*). Prove that any integer number which is not divisible by p is invertible in \mathbb{Z}_p .

Definition 3.21. The completion of \mathbb{Q} with respect to the norm obtained by extension of ν_p , is denoted by \mathbb{Q}_p and is called the **field of** p-adic numbers.

Exercise 3.36 (*). Take $x \in \mathbb{Q}_p$. Prove that $x = \frac{x'}{p^k}$, where $x' \in \mathbb{Z}_p$.

Exercise 3.37 (*). Prove that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Definition 3.22. A norm ν on a ring R is called **non-Archimedean**, if $\nu(x+y) \leq \max(\nu(x), \nu(y))$ for all x, y. Otherwise the norm is called **Archimedean**.

Exercise 3.38 (*). Let ν be a norm on \mathbb{Q} . Prove that ν is non-Archimedean iff \mathbb{Z} is contained in the unit ball.

Hint. Use the following equality: $\lim_{n\to\infty} \sqrt[n]{n} = 1$. Find an estimate of $\sqrt[n]{((\nu(x+y)^n)}$ for big n using the estimate of binomial coefficients: $\nu(\binom{k}{n}) \leq 1$.

Exercise 3.39 (*). Let ν be a non-Archimedean norm on \mathbb{Q} . Consider $\mathfrak{m} \subset \mathbb{Z}$ consisting of all integers n such that $\nu(n) < 1$. Prove that \mathfrak{m} is an *ideal* in \mathbb{Z} (ideal in a ring R is a subset which is closed under addition and multiplication by elements of R). Prove that the ideal

$$\mathfrak{m} = \{ n \in \mathbb{Z} \mid \nu(n) < 1 \}$$

is *prime* (prime ideal is an ideal such that $xy \notin \mathfrak{m}$ for all $x, y \notin \mathfrak{m}$).

Exercise 3.40 (*). Prove that any ideal in \mathbb{Z} is of the form $\{0, \pm 1m, \pm 2m, \pm 3m, ...\}$ for some $m \in \mathbb{Z}$. Prove that any prime ideal \mathfrak{m} in \mathbb{Z} is of the form $\{0, \pm p, \pm 2p, \pm 3p, ...\}$, where p = 0 or p prime.

Hint. Use the Euclid's Algorithm.

Exercise 3.41 (*). Let ν be a non-Archimedean norm \mathbb{Q} and $\mathfrak{m} = \{p, 2p, 3p, 4p, ...\}$ be an ideal constructed above. Prove that there exists a real number $\lambda > 1$ such that $\nu(n) = \lambda^{-k}$ for any $n = p^k r$, $r \not p$.

Exercise 3.42 (*). Let ν be a norm on \mathbb{Q} such that $\nu(2) \leq 1$. Prove that $\nu(a) < \log_2(a) + 1$ for any integer a > 0.

Hint. Use the binary representation of a number.

Exercise 3.43 (*). Let ν be a norm on \mathbb{Q} such that $\nu(2) < 1$. Prove that $\nu(a) \leq 1$ for any integer a > 0 (i.e. ν is non-Archimedean).

Hint. Deduce from $\lim_{n\to\infty} \sqrt[n]{n} = 1$ that $\lim_{n\to\infty} \frac{\log n}{n} = 0$. Prove $\lim_{N\to\infty} \nu(a^N) \leqslant 1$, using the previous problem.

Exercise 3.44 (*). Let a_i be a Cauchy sequence of rational numbers of the form $\frac{x}{2^n}$ ("Cauchy sequence" here means the same thing as Cauchy sequence of real numbers). Suppose that a norm ν on \mathbb{Q} is Archimedean. Prove that $\nu(a_i)$ is a Cauchy sequence.

Hint. Write down x in the binary system and prove that

$$\nu(x/2^n) \leqslant \nu(2)^{\log_2(x)+1}/\nu(2)^n \leqslant \nu(2)^{\log_2|x+1/2^n|}$$
.

Exercise 3.45 (*). Deduce that ν can be extended to a continuous function on \mathbb{R} , which satisfies $\nu(xy) = \nu(x)\nu(y)$. Prove that ν can be obtained as $x \mapsto |x|^{\lambda}$ for some constant $\lambda > 0$. Express λ in terms of $\nu(2)$.

Exercise 3.46 (*). For which $\lambda > 0$ the function $x \mapsto |x|^{\lambda}$ defines a norm on \mathbb{Q} ?

We have obtained a complete classification of norms on \mathbb{Q} : any norm can be obtained as a power of either a p-adic norm or the absolute value norm. This classification is called **Ostrovsky** theorem.