
GEOMETRY 4: Topology of metric spaces.

GEOMETRY 4: Topology of metric spaces.

Definition 4.1. Let M be a metric space and X ⊆ M . Then X is called open when it contains,
together with any point x ∈ X, some ε-ball with the center in x. A subset is called closed if its
complement is open.

Exercise 4.1. Prove that X is open iff for any sequence {ai} converging to x ∈ X all but a finite
number of ai belong to X.

Exercise 4.2. Prove that the union of any number of open sets is open. Prove that the intersection
of a finite number of closed sets is closed.

Exercise 4.3. Prove that the closed ball

Bε(x) = {y ∈ X | d(x, y) 6 ε}

is a closed subset.

Exercise 4.4. Prove that a set is closed iff it contains all its accumulation points.

Definition 4.2. The closure of a set A ⊂ M is the union of A and the set of all the accumulation
points of A.

Exercise 4.5. Consider a metric space, a closed ball Bε(x) and an open ball Bε(x). Is it always
true that Bε(x) is the closure of Bε(x)? Prove that the closure of any subset is always closed.

Exercise 4.6. Let A be a subset of M which has no accumulation points (such a subset is called
discrete). Prove that M\A is open.

Definition 4.3. Let M be a metric space and ε > 0 be a number. Consider R ⊆ M such that M
can be covered by a union of all ε-balls with center in R. Then R is called an ε-net.

Exercise 4.7. Let any sequence in M have an accumulation point. Prove that for any ε > 0 in
M there exists a finite ε-net.

Hint. Suppose that there is no such net, then for any finite set R there exists a point x, whose
distance to R is more than ε. Add x to R, and, using this operation as induction step, obtain an
infinite discrete subset of M .

Definition 4.4. Let X ⊂ M and Ui ⊂ M be a collection of open sets. If X ⊂ ∪Ui then it is said
that Ui is a cover of X. A collection of sets obtained from {Ui} by throwing out some open sets
in such a way that it remains a cover, is called a subcover.

Exercise 4.8. Let M be a metric space, S be an open cover of M . Let every subsequence of
elements of M have an accumulation point. Prove that there exists such an ε > 0, that any ball of
radius < ε is contained in one of the sets of the cover S.

Hint. Suppose that for any ε there exists a point xε such that a corresponding ε-ball is not
contained entirely in any of the sets of the cover. Consider a sequence {εi} which converges to zero
and let x be an accumulation point of {xεi

}. Prove that x is not contained in any of the sets of S.

Exercise 4.9 (!). (Bolzano-Weierstrass lemma) Let X ⊂ M be a subset of a metric space. Prove
that the following conditions are equivalent
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a. Every sequence of points from X has an accumulation point in X.

b. Every open cover of X has a finite subcover.

Hint. Use problem 4.6 to deduce (a) from (b). In order to deduce (b) from (a), take an arbitrary
cover S, a number ε from the problem 4.8 and a finite ε-net. Every ball of the ε-net is contained
in some of the elements Ui ∈ S. Prove that {Ui} is a finite subcover.

Definition 4.5. Let M , M ′ be metric spaces, and f : M → M ′ be a function. Then f is called
continuous, if f maps any sequence that converges to x to a sequence that converges to f(x), for
all x ∈ M .

Exercise 4.10 (!). Let X be any subset of M . Prove that a function f : M → R, x
f7→ d({x}, X) is

continuous, where d({x}, X) (distance between x and X) is defined as d({x}, X) := infx′∈X d(x, x′).

Definition 4.6. Let M be a metric space, X ⊂ M . It is said that X is a compact set, if any
of the statements of the problem 4.9 holds. Note that these conditions do not depend on inclusion
X ↪→ M , but only on the metric on X.

Exercise 4.11 (!). Consider the completion of Z with respect to the norm νp defined above (it is
called “a ring of integer p-adic numbers” and is denoted Zp). Prove that it is compact.

Hint. Prove that any p-adic number can be represented in the from
∑

aip
i, where ai are integers

between 0 and p− 1.

Exercise 4.12. Prove that a compact subset of M is always closed.

Hint. Prove that it contains all its accumulation points.

Exercise 4.13. Prove that a closed subspace of a compact set is always compact.

Exercise 4.14. Prove that a union of a compact sets is compact.

Exercise 4.15 (!). Let f : X → R be a continuous function defined on a compact set. Prove
that f achieves maximum on X.

Definition 4.7. Let X, Y be two subsets of a metric space. Denote the number infx∈X,y∈Y (d(x, y))
by d(X, Y ).

Exercise 4.16 (!). Let X, Y be two compact subsets of a metric space. Prove that there exist
points x, y in X, Y such that d(x, y) = d(X, Y ).

Definition 4.8. A subset Z ⊂ M is called bounded if it is contained in a ball Br(x) for some
r ∈ R, x ∈ M .

Exercise 4.17. Let Z ⊂ M be compact. Prove that it is bounded.

Definition 4.9. Let M be a metric space and X ⊂ M . The union of all open ε-balls with centers
in all points of X is called the ε-neighbourhood of X.

Definition 4.10. Let M be a metric space and let X and Y be its bounded subsets. The Haus-
dorff distance dH(X, Y ) is the infimum of all ε such that Y is contained in an ε-neighborhood of
X and X is contained in an ε-neighborhood Y .
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Exercise 4.18 (!). Prove that the Hausdorff distance defines a metric on the set M of all closed
bounded subsets of M .

Exercise 4.19. Let X, Y be bounded subsets of M and x ∈ X. Prove that it is always the case
that dH(X, Y ) > d(x, Y ).

Exercise 4.20 (!). Let M be a complete metric space. Prove that M is also complete.

Hint. Consider a Cauchy sequence {Xi} of subsets of M . Let S be the set of Cauchy sequences
{xi} with xi ∈ Xi. Let X be the set of accumulation points of sequences from S. Prove that {Xi}
converges to X.

Exercise 4.21 (*). Let {Xi} be a Cauchy sequence of compact subsets of M and X be its limit.
Prove that X is compact.

Hint. One can identify {Xi} with its subsequence such that

dH(Xi, Xj) < 2−min(i,j). (4.1)

Consider a sequence {xi} of points from X. For every Xj find a sequence {xi(j) ∈ Xj} such that
d(xi(j), xi) = d(xi, Xj). Since Xj is compact, this sequence has an accumulation point. Choose
an accumulation point x(0) in {xi(0)} and replace {xi} with its subsequence such that {xi(0)}
converges to x(0). Then replace {xi}, i > 0 with a subsequence such that {xi(1)} converges to x(1).
We replace {xi}, i > k with a subsequence on k-the step in such a way that {xi(k)} converges to
x(k). Prove that we will finally obtain a sequence {xi} such that {xi(k)} converges to x(k) for all
k. Prove that this operation can be carried out in such a way that d(xi(k), x(k)) < 2−i. Use (4.1)
to prove that d(xi(k), xi) < 2−min(k,j)+2. Deduce that {xi} is a Cauchy sequence.

Exercise 4.22 (!). Let M be compact and X ⊂ M . Prove that for any ε > 0 there is a finite
set R ⊂ M such that dH(R,X) < ε. (This statement can be rephrased as follows: “X allows
approximation by finite sets with any prescribed accuracy”)

Hint. Find a finite ε-net in X.

Exercise 4.23 (*). Let M be compact. Prove that M is also compact.

Hint. Use the previous problem.

Definition 4.11. Let M be a metric space. It is said that M is locally compact, if for any point
x ∈ M there exists a number ε > 0, such that the closed ball Bε(x) is compact.

Exercise 4.24. Let M be a locally compact metric space and Bε(x) be a closed compact ball.
Prove that Bε(x) is contained in an open set Z with compact closure.

Hint. Cover Bε(x) with balls such that their closures are compact, and find a finite subcover.

Exercise 4.25 (!). Prove in the previous problem setting that for some ε′ > 0 the ball Bε+ε′(x)
is also compact.

Hint. Take Z as in the previous problem. Take ε′ to be d(M\Z,Bε(x)).
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Definition 4.12. Let (M, d) be a metric space. It is said that M satisfies Hopf-Rinow condi-
tion if for any two points x, y ∈ M and for any two numbers rx, ry > 0 such that rx + ry < d(x, y)

d(Brx(x), Bry(y)) = d(x, y)− rx − ry.

Exercise 4.26 (**). If you know the definition of a Riemannian (or Finsler) manifold, prove that
the Hopf-Rinow condition holds for the natural metric on such a manifold. Justify all the facts
that you use in the proof.

Exercise 4.27 (*). Let M be a complete locally compact metric space which satisfies Hopf-Rinow
condition, x ∈ M be a point and ε > 0 be a number such that Bε′(x) is compact for all ε′ < ε.
Prove that the ball Bε(x) is compact.

Hint. Let {εi}, with εi < ε, be a sequence that converges to ε. Use the Hopf-Rinow condition to
prove that {Bεi

(x)} is a Cauchy sequence with respect to Hausdorff metric, Bε(x). Use the fact
that the limit of such a sequence is compact (you have already proved it before).

Exercise 4.28 (*). (Hopf-Rinow theorem, I) Let M be a complete locally compact metric space
which satisfies Hopf-Rinow condition. Prove that every closed ball Bε(x) in M is compact.

Exercise 4.29. Let M be a metric space such that every closed ball Bε(x) in M is compact. Prove
that M is complete.

Exercise 4.30 (*). Let M be a locally compact complete metric space which satisfies Hopf-Rinow
condition, x, y ∈ M . Prove that there is a point z ∈ M such that d(x, z) = d(y, z) = 1

2
d(x, y).

Exercise 4.31 (*). Let S be a set of all rational numbers of the form n
2k , n ∈ Z which belong to

the interval [0, 1]. Prove in the previous problem setting that there exists a mapping S
ξ→ M such

that d(ξ(a), ξ(b)) = |a− b|d(x, y) and ξ(0) = x and ξ(1) = y.

Exercise 4.32 (*). (Hopf-Rinow theorem, II) Let M be a locally compact complete metric space
which satisfies Hopf-Rinow condition, x, y ∈ M . Prove that the mapping ξ can be naturally
extended to the completion of S with respect to the standard metric, so that the resulting mapping

[0, 1]
ξ→ M satisfies ξ(0) = x, ξ(1) = y and d((ξ(a), ξ(b)) = |a − b|d(x, y) for any two reals

a, b ∈ [0, 1].

Remark. Such a mapping ξ is called geodesic. The Hopf-Rinow theorem can be restated as
follows: for any two points in a complete metric locally compact space which satisfies Hopf-Rinow
condition there is a geodesic that connects them.

Definition 4.13. Such a space is called geodesically connected.

Exercise 4.33 (*). Give an example of a metric space, which is not locally compact but geodesi-
cally connected.

Exercise 4.34. Let V = Rn be the metric space with the standard (Euclidean) metric. Prove that
geodesics in V are intervals (sets of the form ax + (1 − a)y, where a belongs to [0, 1] ⊂ R, and
x, y ∈ V ).

Exercise 4.35. Let V be a finite dimensional vector space with a norm that defines a metric d and
d0 be the Euclidean metric on V . Prove that the identity mapping (V, d) → (V, d0) is continuous
iff a unit ball in (V, d) contains a ball from (V, d0). Prove that the inverse mapping is continuous
provided that a unit ball in (V, d) is contained in a ball from (V, d0).

4



GEOMETRY 4: Topology of metric spaces.

Exercise 4.36. In the previous problem settings, consider a function D(x) := d(0, x) on a unit
sphere Sn−1 ⊂ V

Sn−1 = {x ∈ V | d0(0, x) = 1}

Let D be a continuous function on Sn−1. Prove that the mapping (V, d) → (V, d0) is continuous
and the inverse mapping is continuous.

Hint. Use the fact that a continuous function on a compact set achieves its minimum and maximum
values.

Exercise 4.37 (**). Prove that D is a continuous function.

Exercise 4.38. Let V be a finite dimensional vector space with a norm that defines the metric d.
Suppose that the identity mapping (V, d) → (V, d0) is continuous and the inverse mapping is also
continuous. Prove that (V, d) is complete and locally compact.

Exercise 4.39 (*). Let d be the metric on Rn associated with the norm (x1, x2, ...) 7→ max |xi|.
Prove that it satisfies the Hopf-Rinow condition. Prove that Rn with such a metric is geodesically
connected. Describe how the geodesics look like.

Exercise 4.40 (*). Is it true that the metric d defined by a norm always satisfies the Hopf-Rinow
condition?

Definition 4.14. Let X be a metric space and 0 < k < 1 be a real number. A mapping f : X → X
is called contraction mapping with a contraction coefficient k if kd(x, y) > d(f(x), f(y)).

Exercise 4.41 (!). Let X be a meric space and f : X → X be a contraction mapping. Prove
that for any x ∈ X the sequence {ai}, a0 := x, a1 := f(x), a2 := f(f(x)), a3 := f(f(f(x))), . . . is
Cauchy sequence.

Hint. Use the fact that d(ai, ai+1) = kid(x, f(x)), and deduce that the series
∑

d(ai, ai+1) con-
verges.

Exercise 4.42 (!). (The Contraction Mapping Theorem) Let X be a complete metric space and
f : X → X be a contraction mapping. Prove that f has a fixed point.

Hint. Find the limit of the sequence x, f(x), f(f(x)), f(f(f(x))), . . ..
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