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Abstract

We show that a non-locally modular reduct of the Zariski structure
of an algebraic curve interprets a field. This answers a question of
Zilber’s.
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1 Introduction

Zilber’s trichotomy principle (to be described in more detail below) has an unsual
status in mathematics. Conjectured in various forms by Zilber throughout the late
1970s, essentially every aspect of the conjecture was refuted by Hrushovski [21],
[20] in the late 1980s. Due to Hrushovski’s zoo of counterexamples the conjecture
has never been reformulated. Yet, Zilber’s principle remains a central and powerful
theme in model theory: it has been proved to hold in many natural examples such
as differentially closed fields of characteristic 0, algebraically closed fields with a
(generic) automorphism, o-minimal theories and more (see [7, 34, 31, 8, 25]). Many
of these special cases of Zilber’s trichotomy had striking applications in algebra and
geometry ([22, 23, 37]).

A relatively recent application of one such result is Zilber’s model theoretic
proof [41] of a significant strengthening of a theorem of Bogomolov, Korotiaev, and
Tschinkel ([3]). The model theoretic heart of Zilber’s proof is Rabinovich’ trichotomy
theorem for reducts of algebraically closed fields [36]. In the concluding paragraph of
the introduction to [41] Zilber writes: ”It is therefore natural to aim for a new proof
of Rabinovich’ theorem, or even a full proof of the Restrited Trichotomy along the
lines of the classification theorem of Hrushovski and Zilber [25], or by other modern
methods [...]. This is a challenge for the model-theoretic community.”

The conjecture referred to in Zilber’s text above can be formulated as follows:

Conjecture A. A Let (M,Ω0) be a non-locally modular strongly minimal reduct
of an algebraic curve M over an algebraically closed field K. Then, there exist
definable L,E ∈ Ω0 such that E ⊆ L × L is an equivalence realtion with finite
equivalence classes and L/E with the induced structure from (M,Ω0) is a field K-
definably isomorphic to K.

Rabinovich [36] proved Conjecture A in the special case where M = A1, and her
result can be extend by general principles to any rational curve. In the present paper
we prove Conjecture A. Our proof (Theorem 6.13), despite Zilber’s expectations as
quoted above, is geometric in nature and does not use any advanced model theoretic
machinery. Roughly, it proceeds in four main steps:

1. Given a reduct (M,Ω0) of the full Zariski structure on an algebraic curve
M , the non-modularity assumption a definable 2-dimensional (almost) faithful
family X ⊆ M2 × T of curves in M2. Throughout the text we make the
assumption that for almost all t ∈ T the curve St is pure-dimensional in the
sense of K (i.e., it does not have 0-dimensional irreducible components). This
assuption considerably simplifies the discussion, and is justified in Section 6.

2. We introduce the notion of the slope of a curve C ⊆ M2 at a point P ∈ C,
and use it to define when two curves Ct, Cs ∈ X incident to P are tangent
at that point. The main technical observation is that this geometric notion
of tangency can be detected (up to an equivalence relation with finite classes)
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definably in the reduct. That is, that there exists a definable set T0 ⊆ T × T
and an equivalence relation E with finite classes, such that for any (t, s) ∈ T0

there are t′Et and s′Es such that St′ is tangent to Ss′ at P , Proposition 5.22.

3. This allows us, using our assumption of the first clause and – by now – standard
model theoretic machinery, to reconstruct a 1-dimensional algebraic group in
the reduct, Subsection 5.6.

4. The above reduces us to proving Conjecture A in the context where (M,Ω0) is
a non-locally modular expansion of a 1-dimensional algebraic group, where the
group operation is definable. This problem was studied by Marker and Pillay
in the context of the additive group in characteristic 0, [28]. In Subection 5.8
we show how to apply the tools developed in the previous sections to generalise
the result of [28] to the present, fully general, context (Theorem 5.32).

The general scheme of our proof seem to have much in common with Rabinovich’
original work, though we were unable to understand significant parts of her argument
which are highly technical. We cannot, therefore positively identify the source of
the greater generality of our result or its considerably lower level of combinatorial
complexity. We believe that our more liberal application of algebro-geometric tools
such as non-reduced schemes helped in simplifying the exposition, and possibly also
in extending the scope of the results.

We point out one important source of difficulty in the present paper. As in
Rabinovich’ work — and in most of the works which followed it — the reconstruction
of a group from a 1-dimensional family S ⊆ M2 × T of curves incident to a point
(Q,Q) ∈ M2 is obtained as follows: pick s, t ∈ T independent generics, find r ∈ T
such that the curve Sr is tangent to (in our termonology: ”has the same slope as”)
the curve Ss ◦ Sr at (Q,Q), and prove that the mapping (s, t) 7→ r is (almost)
definable and is (roughly) a group operation on T . This strategy can only work if
the set of slopes of the family S at the point (Q,Q) is infinite. For a field K in
characteristic 0 this is fairly easy, and follows from the uniqueness of solutions of
ordinary differential equations for formal power series over K. This is, of course, not
the case in characteristic p > 0 where the kernel of derivation is non-trivial. This
calls for extra care in the choice of the family S, and we were unable to avoid having
to work with high-order slopes, which is the source of some additional technicalities.
This allows us to reconstruct a 1-dimensional algebraic group2, which we then –
using a case by case analysis – apply to construct a 2-dimensional family of plane
curves with an infinite set of 1-slopes at every generic point of the diagonal.

It seems that the tools developed in the present paper can be generalised to prove
Zilber’s trichotomy in other contexts as well:

1. Prove the full Restricted Trichotomy Conjecture (i.e., remove the restriction in
the present work that M is a curve). This will require extending the adaptation

2In a similar situation Rabinovich, [36, Section 8, p.93] seems to claim that she can actually
recover an additive subgroup of (K2,+), given rise to a characteristic-independent argument.
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to the present context of classical intersection theory of plane curves to higher
dimensions.

2. There are good indications that our techniques translate, almost verbatim, to
extend the main result of [26] to any characteristic and to any 1-dimensional
algebraic group. On the face of it we see no immediate obstruction to proving
the full Restricted Trichotomy Conjecture for algebraically closed valued fields
using the present techniques (at least in the 1-dimensional case). A more
challenging problem will be to use the fine intersection theory developed in
the present paper to study unstable relics of algebraically closed valued fields.

3. Extend at least some of the tools and techniques to the context of strongly
minimal o-minimal relics. In particular, it seems that the results of Section 6,
allowing us to assume pure dimensionality of the curves in our family is an
important technical simplification, that may be adapted to other topological
structures.

4. There are good indications that, at least in characteristic 0, the results of
Section 6 combined with dual results (on the uniform definability of the frontier
of reduct-definable curves in M2) developed in the o-minimal context may give
a new proof of the main result of the present paper, using Zariski Geometries
as a black box.

Acknowledgements. The second author thanks Boris Zilber for his remarks
on an early version of the paper, Maxim Mornev for many helpful comments, and
Qiaochu Yuan for suggesting the elegant proof of Lemma 4.1. We would also like to
thank Moshe Kamensky for some comments and suggestions.

2 Model theoretic background

For readers unfamiliar with the model theoretic jargon we give a self contained
explanation of Conjecture A. In order to keep this introduction as short as possible,
we specialise our definitions to the setting in which they will be applied. Readers
familiar with the basics of model theory are advised to skip to Subsection 2.3.

2.1 Interpretations, Zilber trichotomy

A structure M is a set M , called the universe of the structure, together with a
collection of Boolean algebras Def(M) of subsets of Mn (for all n ∈ N), called
definable sets, and satisfying the following requirements:

1. Def(M) is closed under all projections and permutations of coordinates;

2. All diagonals, i.e. sets of the form { (x1, . . . , xn) ∈ Mn | xi = xj }, are in
Def(M);
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3. If D ∈Mn+m is definable and a ∈Mn then {x ∈Mm : (a, x) ∈ D} is definable.

Usually a structure M is given by specifying the universe M and a collection of
distinguished subsets of powers of M , called atomic definable sets. The class Def(M)
is then the class of sets generated by the atomic definable sets. A function f : Mn →
M is definable if its graph is a definable set. For example, given a field F with the
graphs of addition and multiplication as atomic sets, the additive and multiplicative
inverses are definable and so is every constructible set. If F is algebraically closed
then, by a theorem of Chevalley, these are the only definable sets.

A structure N is a reduct of a structure M if N = M and Def(N ) ⊆ Def(M),
that is, if the two structures share the same universe and any set definable in N is
already definable inM. Given a structureM and a (definable) D ⊆Mn the induced
structure on D is the structure D, with universe D and whose atomic3 definable sets
are all sets of the form Dk ∩S where S ⊆Mnk is definable inM. The structureM
is interpretable in an algebraically closed field K if it is the reduct of the structure
induced from K on some constructible subset of Kn (some n ∈ N).

Basic examples of reducts of an algebraically closed field K, are the trivial reduct,
whose only atomic sets are the diagonals, and the reducts generated by the additive
or multiplicative groups. More complicated examples consist of those structures
generated, say, by the additive group and one non-linear polynomial. It is not too
hard to show that in the first two of these examples the field K cannot be definably
reconstructed. It is somewhat harder to show ([28]) that in the latter example,
the field can be definably reconstructed. The problem of classifying those reducts –
and, more generally, structures interpretable in algebraically closed fields – allowing a
reconstruction of the field is the subject of Zilber’s restricted Trichotomy conjecture.

To give a precise formulation of Zilber’s trichotomy conjecture we need some
more definitions. A saturated (see below) structure M is strongly minimal if all
definable subsets of M are finite or co-finite. For example, it follows immediately
from Chevalley’s theorem that algebraically closed fields (of infinite transcendence
degree) are strongly minimal. Clearly, if M is strongly minimal then so is every
reduct of M. However, given a reducible algebraic curve C and D, a reduct of the
induced structure on C, the resulting structure need not be strongly minimal.

From now M will denote a strongly minimal reduct of the full Zariski
structure of an algebraic curve, M , over an algebraically closed field K.
We will not assume that M is an irreducible curve.

In the present context, the Morley rank of a set S ⊆ Mn definable in M can
be identified with the dimension of its Zariski closure (as an affine variety) – see
also Lemma 2.1 below. A definable set S ⊆ Mn of Morely rank 1 is called a curve,
and if n = 2 it is a plane curve. A definable family of M-definable subsets of Mn

is a collection {Da : a ∈ S} where D ⊆ Mm+n, S ⊆ Mm are definable and for
a ∈ S we denote Da := {x ∈ Mn : (a, x) ∈ D}. In the present text we will denote
such a family as a function f : D → S with f onto S. It is well known (see, for

3In the context of the present paper, in fact, any definable set in the induced structure is of that
form.

5



example, Lemma 6.2.20 in [27]) that if M is strongly minimal and f : D → S
is a definable family of plane curves, then the equivalence relation on S given by
s ∼ t ⇐⇒ #(Ds4Dt) < ∞ is definable. We say that the family f : D → S is
(almost) faithful if ∼ is trivial on S (has only finite classes). If f : D → S is an
almost faithful definable family of plane curves the dimension of the family is the
dimension of S.

As a consequence of weak elimination of imaginaries in M (see, for example,
Lemma 1.6 in [33]) for any M-definable family f : D → S of plane curves there
exists an almost faithful definable family f ′ : D → S′ such that for every s ∈ S
there exists s′ ∈ S′ such that #(Ds4D′s′) <∞. We say that M is locally modular
if every almost faithful family of plane curves is at most 1-dimensional.

Clearly, algebraically closed fields are not locally modular as is witnessed by the
definable family of affine lines f : D → K2 given by f(x, y, a, b) = (a, b) where
D(x, y, a, b) := {(x, y, a, b) : ax + b = y}. It follows that if K can be reconstructed
in M then M is not locally modular. Thus, Zilber’s conjecture, asserts that a field
(necessarily isomorphic to K) can be reconstructed in the structure M if and only
if M is not locally modular.

We remark that the model theoretic notion of a family of curves is looser than
standard notions studied in algebraic geometry, e.g., no flatness conditions are im-
posed.

2.2 Generic parameters, imaginaries, canonical bases

We will now introduce more subtle model theoretic notions used in the text, referring
to [27, 9, 6, 32] for a more thorough exposition.

The language (or signature) of a structure M specified by its atomic definable
sets is a set of symbols (with prescribed arities), L, and a function τ (the interpre-
tation of L in M) from L onto the class of atomic definable sets. We say that M is
an L-structure.

Given an L-structure M, a key notion in model theory is that of a set being
definable over a set of parameters A ⊆M . The class of ∅-definable sets is the minimal
subclass of Def(M) that is closed under (fintite) boolean operations, projections and
containing all diagonals. A set definable set D ⊆ Mn is A-definable if there is a ∅-
definable set D′ ⊆Mn+m (some m) such that D = {x ∈M : (x, ā) ∈ D′} where ā is
a tuple from A (of length m).

An algebraically closed field K is saturated if it is of infinite transcendence degree
over its prime field. Any structure interpretable in a saturated algebraically closed
field is itself saturated. For saturated structures the notion of a definable set D being
A-definable is equivalent to D being invariant (set-wise) under all automorphisms
ofM fixing A point-wise (where an automorphism ofM is any bijection respecting
all atomic sets).

A (complete) type over a set A is an (ultra)-filter of A-definable sets (i.e., a
(maximal) collection of A-definable sets with the finite intersection property). Unless
specifically stated otherwise, all types in the present paper will be complete. If M
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is saturated and |A| < |M | and p is a type over A then, in fact, the intersection of
all definable sets in p is non-empty. Throughout this paper all sets of parameters
will be small, i.e., of cardinality smaller than that of M . An element b ∈

⋂
D∈p

D is a

realisation of p. The rank of a type p is the minimum rank of a formula in p. If p is
a type over A and q is a type over B we say that q extends p if p ⊆ q. We say that
q is a non-forking extension over p if p and q have the same rank.

Given an element b ∈ M and a set of parameters A the type of b over A is the
collection of all A-definable sets D such that b ∈ D. This is denoted tp(b/A). In a
saturated structureM, for any set of parameters A any type p over A is the type of
some element. Given an element b and parameters sets A ⊆ B we say that b does
not fork with B over A (or that b is independent from B over A) if the tp(b/B) is
a non-forking extension of tp(b/A). In the context of algebraically closed fields this
amounts to the locus of b over B being equal to the locus of b over A.

If M is saturated any type over A can be identified with the an orbit of the
automorphism group of M fixing A point-wise. In this language the rank of a type
is the Krull dimension of the closure (in K) of the orbit associated with that type.

Given an A-definable set D a type in D is any type p (over a parameter set
B ⊇ A) such that D ∈ p. Since algebraic varieties have only finitely many irreducible
components of maximal rank, and since M is a reduct of the full Zariski structure
on M , it follows that for any definable set D there are finitely many types in D of
maximal rank. Those are the generic types in D. A set D is stationary if it has a
unique generic type (over any set of parameters B. E.g., if the closure of D is an
absolutely irreducible variety). This implies that at the price of extending the set of
parameters any definable set D can be definably split into finitely many (disjoint)
stationary sets. We observe that for a stationary set D the generic type of D can be
conveniently described as the type given by D and the negation of all A-definable
subsets of D of rank smaller than the rank of D. We say that a type p over A is
stationary if there is a definable set D ∈ p of minimal rank which is stationary.

We will say that an M-definable property holds for almost all elements of D if
every generic element of D satisfies that property.

An element b ∈ D is generic in D (over A) if it is a realisation of a generic type in
D (equivalently, if its type over A is generic in D). Manipulations of realisations of
generic types is a common technique in model theory (used non-trivially throughout
Section 6, for example). This may seem unclear to non-specialists due to the fact
that the term “generic point” does not refer to exactly the same notion as in the
theory of schemes. For example, a generic point of an irreducible variety in the sense
of scheme theory is unique, whereas two realisations x, y of the unique generic type
of A1 may be independent so that the type of the tuple (x, y) ∈ A2 is the generic
type of A2, but if they are dependent (x, y) will be a generic point of a subvariety
of A2 projecting dominantly on both coordinates of the affine plane.

Further, a fibre Xa of a definable set X ⊂ Mm+n, where a is a realisation of
the generic type of a variety Y ⊂ Mm, corresponds to the base change of X to the
generic point of Y in the scheme-theoretic sense. The points of Xa in a saturated
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model are then generic points of subvarieties of X that project dominantly on Y .
Note that if D is M-definable it is certainly K-definable, so it makes sense to

talk about a K-generic element of D. Such an element is also generic in the sense
ofM. Throughout this text, unless specifically stated otherwise, all generics will be
taken with respect to the full Zariski structure.

A type p over a parameter set A is algebraic if it has rank 0. In the context
of saturated structures this is equivalent to the orbit associated with p being finite
(which is the same as the type having only finitely many realisations in M). An
element b is algebraic over A if tp(b/A) is algebraic. In the context of algebraically
closed fields an element is algebraic over A in the model theoretic sense precisely if
it is algebraic over the field generated by A in the usual algebraic sense. However,
ifM is a reduct of the full Zariski structure on M the algebraic closure in the sense
ofM will, in general, be smaller than in the algebraic sense. A set A is algebraically
closed if any element algebraic over A is in A. In the context of algebraically closed
fields a set A is algebraically closed precisely if it is an algebraically closed subfield.

The above description of the algebraic closure in a structureM is adequate in the
context of algebraically closed fields, but is not quite strong enough for our purposes.
This can be better explained by considering the action of the automorphism group of
M fixing a parameter set A not only on elements of the universe, but also as definable
sets. In the context of algebraically closed fields, if V is an affine variety (or, more
generally, a constructible set) and A is an algebraically closed field containing the
field of definition of V then either Aut(K/A) fixes V set-wise or it has an infinite
orbit. If M is a reduct of the full Zariski structure on M this need not be the case.

To addres this problem recall that if D is an A-definable set then D = D′(ā)
for some ∅-definable set D′ and dom(ā) ⊆ A. Let T be the projection of D′ onto
the coordinates corresponding to ā. Consider the (definable) equivalence relation
on T given by t ∼ s if D(s) = D(t) (as sets). It is clear that the orbit of D
under aut(M/A) is in bijection with the quotient space T/ ∼. In the context of
algebraically closed fields T/ ∼ can be naturally identified with a constructible set,
and it follows that if T/ ∼ is finite then the elements of this algebraic set are algebraic
over A. We say that a structure has elimination of imaginaries if for any ∅-definable
set T and any ∅-definable equivalence relation E on T there is a ∅-definable set S
and a ∅-definable function f : T → S such that f(x) = f(y) if and only if E(x, y).
The above discussion can be readily adapted to show that algebraically closed fields
admit elimination of imaginaries.

In the more general context we are working in there is no reason to assume that
M has elimination of imaginaries. There is a standard model theoretic technique for
adding, to any structure M, any ∅-definable set T and any ∅-definable equivalence
relation E on T a new sort (which we identify with T/E) and a new function symbol
πE : T → T/E (which we identify with the natural projection map). The resulting
structure is denotedMeq and it is an easy exercise to verify thatMeq admits elimi-
nation of imaginaries. The elements of the new sorts are called imaginary elements.
The new elements we added to M are referred to as imaginary elements and they
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should be thought of as canonical names for equivalence classes of ∅-definable equiv-
alence relations. Throughout this text, when referring to the algebraic closure of
a parameter set A we will be implicitly referring to the algebraic closure including
imaginary elements (i.e., including names for definable equivalence relations with
a finite number of classes). In the next subsection we will give a more concrete
description of the treatment of imaginaries in the present paper.

One of the most striking and powerful applications of imaginary elements is
that they allow us to treat definable sets as elements of our structure. That is,
if D = D′(ā) is definable (with D′ ∅-definable), T and ∼ are as in the previous
paragraph, then D is identified with [ā]/ ∼, and the latter is called a code for D, or
a canonical parameter for D. Note that the canonical parameter of a definable set
is not uniquely determined, but the rank of its type is, which will suffice for all our
applications.

2.3 Remarks on the model-theoretic set up

Throughout the paper K is an algebraically closed field of infinite transcendence
degree. We fix M , an affine algebraic curve over K and M a non-locally modu-
lar reduct of the full Zariski structure on M . The following lemma justifies the
correspondence between Morley rank and Krull dimension introduced above:

Lemma 2.1. For anyM-definable set Z ⊂Mn the Morley rank of Z inM coincides
with the Krull dimension of the Zariski closure of Z.

Proof. The claim is clear if Z = Mk. In general Z has Morley rank k if and only if
k is maximal such that some projection π : Z → Mk contains an M-generic point
of Mk. So such a projection of Z contains a K-generic point, so the Morley rank is
bounded from above by the Krull dimension of K. As the other inequality is obvious
(K-generic points being obviously M-generic), the lemma is proved.

We proceed with a few basic reductions and conventions that will simplify the
exposition and the notation. First, there is no harm assuming that M = (M,X),
where X is a predicate naming the total space of a 2-dimensional (almost) faithful
family X → T of plane curves (in the sense of the structure M). Indeed, since
M is non-locally modular, there exists a 2-dimensional family of plane curves, X,
and (M,X) is a reduct of M. If a field is interpretable in (M,X) it is necessarily
interpretable already in M. Next we need the following easy observation:

Remark. Let D be a strongly minimal set definable in M. Then D with the full
induced structure is non-locally modular.

It is an easy exercise to verify that the notion of interpretablity is transitive,
namely, that if a structure N is interpretable in M and D is interpretable in N
then D is interpretable in M. Thus, if D is a strongly minimal set definable in
M and D is the M-induced structure on D, in order to show that M interprets
a field it will suffice to show that D interprets a field. Therefore, we may assume,
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e.g., that the curve M is regular (by removing its non-regular locus, which is finite,
and in particular definable in any structure on M). Similarly, after showing that a
1-dimensonal group is interpretable in M we may assume – by replacing M with
the universe of the group with its full induced structure – thatM itself expands an
algebraic group.

While algebraically closed fields have elimination of imaginaries there is no reason
for the same to be true in M. However, by the previous paragraph, any strongly
minimal structure D interpretable (allowing imaginary elements) in M is already
interpretable in K. Since K does have elimination of imaginaries, the structure D
can be identified with the reduct of the full Zariski structure on some algebraic curve
D over K. In particular, if D is non-locally modular then it falls in the scope of
Conjecture A, justifying the reduction of the previous paragraph.

The above allows us to tacitly assume that the structure M has elimination of
imaginaries. This is merely a matter of convenience. As explained in the previ-
ous paragraphs, using elimination of imaginaries for algebraically closed fields, and
changing the ground structure as we go, we can avoid almost any usage of imaginar-
ies. There is, however, one exception. We cannot assure the existence of a faithful
2-dimensional family of plane curves in M without allowing the parameter space T
of the family to range over imaginary sorts. Though all proofs in the present work
could go through essentially unaltered if X were an almost faithful family of plane
curves, this could somewhat hamper the clarity of the exposition by adding simple,
unnecessary, technicalities which we prefer to avoid.

3 Correspondences and slopes

The main object of study in the present section is that of a correspondence and its
slopes (of various orders) at a regular point. After introducing these notions we study
the behaviour of slopes under composition (subsection 3.17) and under taking sums
of compositions in the presence of an underlying group structure (Subsection 3.2).
Most of the algebro-geometric definitions in this (and the next) section are well
known. We give them here specialised to the context in which they will be used.

Definition 3.1 (Correspondence). 1. If X and Y are schemes, a correspondence,
α, from X to Y is a closed subscheme of X×Y whose projection on X is dom-
inant. We refer to the closed subscheme itself as the graph of the correspon-
dence, denoted Γ(α). A correspondence α is finite-to-finite if the projections
pX , pY restricted to Γ(α) are quasi-finite morphisms.

2. If X and Y are definable sets a definable correspondence from X to Y is any
definable set Z ⊆ X × Y projecting generically onto X.

3. When we wish to emphasize that we regard the correspondence α as a multi-
valued map from X to Y we write α : X ` Y .
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In order to define the slope of a correspondence X at a regular point P ∈ X we
need the notion of a local coordinate system at P .

Definition 3.2 (Local coordinate system). Let P be a regular point of a variety

X of dimension n. A local coordinate system at P is an isomorphism ÔX,P
∼−→

k[[x1, . . . , xn]].

By Corollary to Theorem 30.5 [29] any variety over a field is generically regular,
and by Theorem 29.7 loc.cit. a completion of a regular local ring over a field is a
formal power series ring.

If X is one-dimensional and a local coordinate system is chosen at P then for
all n > 0 the inclusion OX,x → ÔX,x followed by the reduction maps k[[x]] →
k[[x]]/(xn+1) ∼= k[x]/(xn+1) gives rise to closed embeddings Spec k[x]/(xn+1) ↪→ M
with the closed point of Spec k[x]/(xn+1) mapped to P .

If i1 : ÔX,P1

∼−→ k[[x]], i2 : ÔY,P2

∼−→ k[[y]] are local coordinate systems at regular
points P1 ∈ X,P2 ∈ Y then there is a natural local coordinate system at the point
(P1, P2) ∈ X × Y ,

i1 ⊗ i2 : ̂OX,P1 ⊗OY,P2 → lim←−(k[x]/(xn)⊗ k[y]/(yn)) ∼= k[[x, y]].

Remark. From now on, whenever we mention that we choose a local coordinate
system at (P1, P2) ∈ M2 for M a curve, we do so by choosing local coordinate
systems i1, i2 at P1, P2 ∈M2 and then passing to i1 ⊗ i2.

Finally, let f : X → Y be a morphism of schemes. Recall ([14] EGA IV.17.1)
that a morphism f is formally étale if for any scheme T , closed subscheme T ′ defined
by a nilpotent ideal and any two compatible morphisms λ : T ′ → X and ι : T → Y
there is a unique morphism ῑ : T → X such that the following diagram commutes

T ′
λ //

��

X

f
��

T
ι //

ῑ

>>

Y

Observe that a closed embedding ι lifts to a closed embedding ῑ and it follows
automatically that f induces an isomorphism between two copies of T embedded
into X and Y .

A morphism f : X → Y is étale if it is flat and unramified.
An étale morphism of schemes f : X → Y is formally étale (SGA1 [16], Corol-

laire I.5.6), and a formally étale morphism which is locally of finite presentation is
étale ([14] EGA IV, Corollaire 17.6.2). Since in what follows we deal mainly with
schemes of finite type over fields, we will not distinguish between these two notions.

Lemma 3.3. Let f : X → Y be an étale morphism. Assume Y is the spectrum of
a local Artinian algebra over a field. Then sections of f are in one-to-one corre-
spondences with closed points in the fibre over the closed point of Y . For any such
section s the composition f ◦ s is an isomorphism.
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Proof. By definition of formally étale morphism, given any morphism λ : Y ′ → X
where Y ′ is a reduced subscheme supported at a closed point of X yields a unique
section s that makes the following diagram commute:

Y ′
λ //

��

X

f
��

Y
id //

s

>>

Y

That s ◦ f is an isomorphism follows from Corollary I.5.3, SGA1 [16].

Definition 3.4 (Scheme-theoretic image). Let f : X → Y be a morphism of
schemes. The scheme theoretic image of X in Y is the smallest closed subscheme of
Y through which f factors.

Lemma 3.5. Let OX be a local ring with residue field k and let f : OX,x →
k[ε]/(εn+1) be a morphism. Then f factors through OX,x/mn+1 where m is the
maximal ideal of OX,x.

Proof. One observes easily that f−1(p) ⊂ mn+1 where p is the radical ideal of
k[ε]/(εn+1), since pn+1 = 0. This implies the statement of the lemma.

Let M be a curve, and assume a local coordinate system is chosen at a regular
point P = (P1, P2) ∈M2. Let Z ⊆M×M be a closed one-dimensional reduced sub-
scheme such that the projection p1 restricted to Z is étale in an open neighbourhood
of P . Consider the diagram

OM,P2

f2 //

�� g

��

OM,P2/m
n+1
2

τn

��

∼
k[η]/(ηn+1)

OZ,P
γ

&&
OM,P1

f1 //

OO

OM,P1/m
n+1
1

∼
k[ε]/(εn+1)

where m1,m2 are maxmial ideals ofOM,P1 ,OM,P2 , respectively. The isomorphisms on
the right are provided by the local coordinate systems at P1 and P2. The morphism
γ is a lifting of f1 that follows from etaleness of OZ,P over OM,P1 . The morphism g
is the composition of the structure morphism of the OM,P2-algebra OZ,(P1,P2) and γ.
By Lemma 3.5, g factors through OM,P2/m

n+1. The morphism τn that comes out
of this factorization, can be regarded as an endomorphism of k[ε]/(εn+1) after one
identifies k[η]/(ηn+1) with k[ε]/(εn+1).

Definition 3.6 (Slope). Let M be a curve, and let Z ⊂M×M be a curve as above.
The n-th order slope of Z at (P1, P2) is the endomorphism τn : k[ε]/(εn+1) →
k[ε]/(εn+1) arising from the construction above. In general, we will denote the slope
of Z at P , which is an element of End(k[ε]/(εn+1), as τn(Z,P ).

12



Similarly, in the above setting if N is an algebraic variety over k and Z ⊂M2×N
a curve, P = (P1, P2, P3) ∈ Z a regular point and such that the projection p1 on the
first factor M is étale in an open neighbourhood of (P1, P2, P3), one can consider
the diagram as above, and consider the morphism γ obtained as a lifting of f1

that follows from etaleness of OZ,P over OM,P1 . By Lemma 3.5, g factors through
OM,P2/m

n+1. The morphism τn that comes out of this factorization, can be regarded
as an endomorphism of k[ε]/(εn+1) after one identifies k[η]/(ηn+1) with k[ε]/(εn+1).

Definition 3.7 (Relative slope). The n-th order slope of Z at (P1, P2, P3) relative to
N is the endomorphism τn : k[ε]/(εn+1)→ k[ε]/(εn+1) arising from the construction
above. We will denote the relative slope by τn(Z/N,P ) ∈ End(k[ε]/(εn+1).

The need for this seemingly artificial definition will become apparent in the next
section.

In the above definition, and later in this article, we assume that a choice of local
coordinate systems for M at the relevant points has been made.

A first-order slope is a map k[ε]/(ε2) → k[ε]/(ε2), which is determined by its
action on ε, ε 7→ a · ε. We observe that the scalar a is just a component of the nor-
malised Plücker coordinates of the tangent subspace in the given local coordinate
system. Clearly, two curves having the same first order slope at a point are tangent
at this point.

We will also need to consider projective limits of slopes of all orders, which are
formal power series.

Definition 3.8 (Formal power series expansion). In the setting of Definition 3.6
consider the endomorphism

A = lim←−
n

τn(Z, (P1, P2)) ∈ lim←−(End(k[ε]/(εn+1) ∼= End(k[[x]])

We call A(x) the formal power series expansion of Z at (P1, P2).

Proposition 3.9. Assume local coordinate systems are chosen at (P1, P2), then

there is a canonical isomorphism ̂O(P1,P2),M2 → k[[x, y]]. The formal power series
expansion of X at (P1, P2) is f ∈ k[[ε]] if and only if the morphism O(P1,P2),M →
k[[ε]] given by x 7→ ε, y 7→ f factors through O(P1,P2),X .

Proof. Straightforward from the definitions.

Later on we will needing the following charactersiation of invertible endomor-
phisms from End(k[ε]/(ε /n+ 1):

Proposition 3.10. Let Aut(k[ε]/(εn+1)) denote the set of automorphisms of k[ε]/(εn+1).
Consider the restriction map End(k[ε]/(εn+1)) → End(k[ε]/(ε2)) defined by ϕ 7→
(f 7→ ϕ(f)/(x2)). Then Aut(k[ε]/(εn+1)) is the pre-image of Aut(k[ε]/(ε2)).
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Proof. An endomorphism ϕ ∈ End(k[ε]/(εn+1)) is invertible if and only if there exists
f such that ϕ(f) = x. By Corollary 7.17, [11], an endomorphism of k[[x]] defined by
sending x to f is an automorphism if and only if f ∈ (x) but not f ∈ (x2). As any
ϕ ∈ End(k[ε]/(εn+1)) extends uniquely to End(k[[x]]), the conclusion follows.

Definition 3.11 (Graph of a morphism). Let f : X → Y be a morphism of schemes
over some base scheme S. The graph of the morphism f is the unique closed sub-
scheme Z ⊂ X×S Y such that the projection on X restricted to Z is an isomorphism
and f = pY ◦ p−1

X .

Lemma 3.12. Let Z ⊂ M ×M be a locally closed set of dimension 1 such that
the slope is well-defined at P ∈ Z. Let OM2,P → k[ε, η]/(εn+1, ηn+1) be the natural
morphism induced by the local coordinate system.

Define

R := OZ,P ⊗OM2,P
k[ε, η]/(εn+1, ηn+1) and sZ := SpecR

Then sZ, identified with a closed subscheme of Spec k[ε, η]/(εn+1, ηn+1), is the graph
of τn(Z,P ). If p2 : Z → M is étale in an open neighbourhood of P then it is is an
automorphism of k[ε]/(εn+1).

Proof. Consider R in relation to the objects in the diagram used in the definition of
slope. The ring R has a natural OM2,P /m

n+1-algebra structure, and hence a natural

OM,P1/m
n+1
1 -algebra and OM,P2/m

n+1
2 -algebra structure:

OM,P2

f2 //

�� g

��

OM,P2/m
n+1
2

p2

��
τn

��

∼
k[η]/(ηn+1)

R OZ,Poo

γ

&&
OM,P1

f1 //

OO

OM,P1/m
n+1
1

p1

WW

∼
k[ε]/(εn+1)

The map p1 ⊗ p2 is factors through quotient of k[ε, η]/(εn+1, ηn+1). It follows
from the fact that OZ,P is étale over OM,P1 that the morphism p1 is an isomorphism,
and if OZ,P is supposed étale over O, p2 is an isomorphism too. The statement of
the lemma follows from the commutativity of the diagram.

Lemma 3.13. Let Z ⊂ M2 × N be a locally closed set of dimension 1 such that
relative slope is well-defined at P ∈ Z, and let p : Z → M2 be the projection
on the factor M2, with p1, p2 projections on the first and second copies of M . Let
OM2,P → k[ε, η]/(εn+1, ηn+1) be the natural morphism induced by the local coordinate
system.
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Define

R := OZ,P ⊗OM2,P
k[ε, η]/(εn+1, ηn+1) and sZ := SpecR

Then the scheme-theoretic image of sZ under π is the graph of τn(Z/N,P ). If p2 :
Z → M is étale in an open neighbourhood of P then it is an automorphism of
k[ε]/(εn+1).

Proof. Similar to the proof of the previous lemma. In the situation of the present
lemma, as R is isomorphic a quotient k[ε, η]/(εn+1, ηn+1) of, SpecR is by definition
the scheme-theoretic image of Z̄ under p.

3.1 Composition of correspondences

We have identified the slope of a curve at a regular point with an automorphism of
Spec k[ε]/ εn+1. We note that the group of automorphisms of Spec k[ε]/ ε2 is Gm(k),
and that in general an automorphism group of a fat point Spec k[ε]/ εn+1 is unipotent
of rank n. Our goal in Section 5 will be to recover Gm(k) by identifying its points
with the (first order) slopes of a family of curves in M2. In positive characteristic we
will have to resort to higher order slopes and we will not be able assure that the group
recovered will indeed be Gm(k), but the general outline of the construction remains
the same. The group operation on slopes arises from the operation of composition
of correspondences. In this subsection we develop the necessary machinery.

Definition 3.14 (Scheme-theoretic composition of correspondences). Let X,Y, Z
be schemes over a field, and let α : X ` Y, β : Y ` Z be closed subschemes of
X×Y and Y ×Z respectively, regarded as correspondences. Denote, p12, p23, p13 the
projections from X×Y ×Z onto the respective products of schemes. let Iα, Iβ be the
ideal subsheaves of OX×Y and OY×Z cutting out the graphs of α and β respectively.
Define an ideal sheaf, a subsheaf of OX×Z

Iβ◦α = (p13)∗(p
∗
12Iα ⊗ p∗23Iβ)

and define β ◦ α to be the correspondence with the graph cut out by Iβ◦α.

Definition 3.15 (Composition of definable correspondences). Let X,Y, Z be sets
definable in M , and let α ⊂ X × Y, β ⊂ Y × Z be definable correspondences. We
will denote by β ◦ α the composition of α and β

β ◦ α = { (x, z) ∈ X × Z | ∃y ∈ Y (x, y) ∈ α and (y, z) ∈ β }

and α−1 the inverse correspondence,

α−1 = { (y, x) | (x, y) ∈ α }
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These two definitions are closely related: the graph of the scheme-theoretic cor-
respondence of Definition 3.14, Γ(β ◦ α), is the Zariski clousre of the graph of the
composition Γ(β ◦ α) in the sense of Definition 3.15. By the Proper Mapping The-
orem the two definitions agree if the projections Γ(α) → X and Γ(β) → Z are
proper.

We point out that regularity is not always preserved under composition. That
is, even if Z1 is regular at (P1, P2) and Z2 is regular at (P2, P3) the composition
Z2 ◦ Z1 is not necessarily regular at (P1, P3). This is where the notion of relative
slope introduced in the previous section becomes useful.

Consider two curves V,W regular at (P1, P2) ∈ V and (P2, P3), and let S ⊂M3

be the curve cut out by the ideal sheaf p∗13IV ⊗ p∗23IW ; then W ◦ V is the image of
S under the projection p13 on the first and third factor M in M3. Proposition 3.17
below gives the relative slope at a point on S in terms of slopes of W and V . The
proofs uses the projection formula for coherent sheaves and finite morphisms, as
stated in the next lemma:

Lemma 3.16 (Projection formula). Let p : X → Y be an affine morphism of
schemes, and let E ,F be coherent sheaves on X,Y respectively. Then the natural
morphism

p∗E ⊗ F → p∗(E ⊗ p∗F)

is an isomorphism.

Proof. Follows from Corollaire I.9.3.9, [15].

Proposition 3.17. Let M be an algebraic curve over a field. Let V,W be curves
incident to (P1, P2) ∈ M2 and (P2, P3) ∈ M2, respectively, and regular at these
points. Fix local coordinate systems at P1, P2, P3 and assume that the slopes of V
and W are well-defined at (P1, P2) and (P2, P3), respectively. Let S be the variety
cut out by the ideal sheaf p∗12IV ⊗ p∗23IW . For any integer n > 0

τn(S, (P1, P2, P3)) = τn(W, (P1, P2)) ◦ τn(V, (P2, P3))

In particular, by Lemma 3.13, if W ◦ V = p13(S) is regular at (P1, P3),

τn(W ◦ V, (P1, P3)) = τn(W, (P1, P2)) · τn(V, (P2, P3))

Proof. Let X,Y, Z be copies of Spec k[ε]/(εn+1) and let iX , iY , iZ be the closed em-
beddings of X,Y, Z into M that map the unique closed points of these schemes to
P1, P2, P3 respectively. Let ĎW, sV be restrictions of W,V to infinitesimal thickenings
X × Y, Y × Z of the points (P1, P2) and (P2, P3). More precisely,

ĎW = W ×iX×iY (X ×k Y ) sV = V ×iY ×iZ (Y ×k Z)

By Lemma 3.12

ĎW = Γ(τn(W, (P2, P3))) sV = Γ(τn(V, (P1, P2)))
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Denote pXY , pY Z , pXZ the projections of X×Y ×Z onto the respective products
of factors. Denote f : X → Y and g : Y → Z the morphisms such that ĎW =
Γ(f), sV = Γ(g). Let If , Ig, Ig◦f be the ideal subsheaves of OX×Y , OY×Z and OX×Z
that cut out the graphs of f ,g and g ◦ f respectively.

Now notice that ĎW ◦ sV is the scheme-theoretic image of (W×p2V )×iX×iZ (X×Z)
under pXZ , and that W ×p2 V is regular at (P1, P2, P3) since its projection to V is
étale in the neighbourhood of this point and V is regular. Notice also that the
natural projection of W ×p2 V to W is étale, so its composition with projection p1

to M is étale too, so the relative slope is well-defined.
Therefore, by Lemma 3.12, in order to prove the first statement of the proposition

it suffices to show that

(pXZ)∗(p
∗
XY If ⊗ p∗Y ZIg) = Ig◦f

Denote γf : X → X × Y , γg : Y → Y ×Z and γg◦f : X → X ×Z the morphisms
sending the domains of f , g, g ◦ f onto their respective graphs.

Then

(pXZ)∗(p
∗
XY If ⊗ p∗Y ZIg) = pXZ∗(p

∗
XY If ⊗ (idX ×γg)∗OX×Y )

and by Lemma 3.16 (which we can apply because the map idX ×γg is affine and all
the sheaves involved are coherent),

(pXZ)∗(p
∗
XY If ⊗ p∗Y ZIg) =

= (pXZ)∗((idX ×γg)∗((idX ×γg)∗p∗XY If ⊗OX×Y )) =
= (pXZ)∗(idX ×γg)∗(idX ×γg)∗p∗XY If

Taking into account the commutativity of the following diagrams

X × Y
idX ×γg //

idX ×g ))

X × Y × Z
pXZ

��
X × Z

X × Y
idX ×γg //

idX×Y ))

X × Y × Z
pXY

��
X × Y

we conclude that
(pXZ)∗(p

∗
XY If ⊗ p∗Y ZIg) = (idX ×g)∗If .

Notice further that the following diagram commutes

X
γf //

g◦f
**

X × Y idX ×g// X × Z
pZ
��
Z

and conclude

(pXZ)∗(p
∗
XY If ⊗ p∗Y ZIg) = (idX ×γg)∗γf∗OX = γg◦f∗OX = Ig◦f .

The second part of the lemma follows from the first part and Lemma 3.13.
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The previous lemma, since it applies to n-slopes for all n, extends to the composi-
tion of the formal power series expansion of curves. More precisely, recall that formal
power series can be composed in the following sense: given an element y ∈ k[[x]]
from the maximal ideal, there exists a unique homomorphism of topological rings
fy : k[[x]]→ k[[x]] mapping x to y (see [4], IV,§3 for example). The image of a power
series z ∈ k[[x]] under fy is the composition of the power series y with the power
series z. Since the expansion of a curve Z at a regular point is defined through the
inverse system of n-slopes, it is then easy to verify that, in the notation of Proposi-
tion 3.17, the power series expansion or W ◦V at P is the composition of the power
series expansion of V at P with the power series expansion of W at P .

3.2 Sum of correspondences

We are now going to define another binary operation on correspondences, more
precisely on correspondences between a fixed variety and an algebraic group. This
operation amounts to application of group law to the second coordinates of points in
M2 and we call it, abusing terminology and notation, “the sum of correspondences”.
For correspondences with étale projection on the source it can be defined in a com-
patible way scheme theoretically. When applied to maps from the double point to
an algebraic group, the operation amounts to addition of tangent vectors which can
be taken as a justification for the terminology. Ultimately, this operation will allow
us in Section 5.8, after recovering Gm(k) using compositions, to recover the additive
group of the field and the action of the former on the latter.

Definition 3.18 (Sum of definable correspondences). Let T be a definable set,
(G,+) be a definable group and let α, β : T ` G be definable correspondences. Define:

α+ β := {(x, u) ∈ T ×G | ∃y, z ∈ G (x, y) ∈ Γ(α) and (x, z) ∈ Γ(β)
and u = y + z)}

Remark. The notation above suggests that G is commutative. The definition applies
even if it is not the case, although in this paper we will only deal with G which are
Abelian or Abelian-by-finite.

Note that the sum of correspondences does not in general define a group law on
the class of all definable correspondences between a fixed set T and a group G, in
fact, the obvious candidate for the “opposite” correspondence

−α := { (x,−y) | (x, y) ∈ Γ(α) }

is an opposite with repsect to “+” only if α is a graph of a function.
As in the case of composition of correspondences, where we had both scheme

theoretic and model theoretic definitions of composition we introduce a scheme the-
oretic version of the sum of correspondences.
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Definition 3.19 (Scheme-theoretic sum of correspondences). Let G be an algebraic
group, α, β : T ` G finite-to-finite correspondences with graphs étale over T . We
define α+ β to be the correspondence T ` G with the graph cut out by the ideal

Iα+β = (id×a)∗(p
∗
12Iα ⊗ p∗13Iβ)

where a : G×G→ G is the group law morphism and pi,j are the natural projections
from T ×G×G.

It follows from the definition that the scheme-theoretic sum of correspondences
is the scheme-theoretic image under the morphism id×a of the scheme Γ(α)×p1,M,p1

Γ(β). It therefore coincides with Zariski closure of its definable counterpart.

Proposition 3.20. Let (G, a) be an algebraic group over a field k and let ρ :
G(Spec k[ε]/ ε2) → G(k) be the natural restriction map. Then Ker ρ is isomorphic
to Gn

a(k) where n = dimG.

Proof. The set Ker ρ is naturally identified with the tangent space T0G, and the
differential of the group law is some bi-linear map ā : T0G⊗ T0G→ T0G. It follows
from bi-linearity that

ā(x⊗ y) = Ax+By

for some A,B ∈ GLn(k).
It follows from associativity of the group law that:

A(Ax+By) +Bz = Ax+B(Ay +Bz)

for all x, y, z ∈ T0G. From that we easily deduce that A2 = A,B2 = B. Therefore
necessarily, A and B are the identity maps, and a(x, y) = x+ y.

Remark. Proposition 3.21 and Proposition 3.20 are manifestations of the fact that
the first-order truncation of one-dimensional formal group law is always of the form
(x, y)→ x+ y. In general, higher-order truncations depend on the local coordinate
system chosen, and are not always isomorphic to Ga. For example, completion in the
standard coordinate system at the identity of Gm is of the form (x, y) 7→ x+ y+xy,
and in positive characteristic it is impossible to choose a coordinate system such
that it becomes of the form x+ y, as follows from Cartier’s theory of formal group
laws (see for example Section 10 of [10]).

An element of End(k[ε]/(εn+1)) is completely determined by the truncated poly-
nomial withe zero constant term which is the value of the endomorphism on the gen-
erator ε; addition of such truncated polynomials defines addition on End(k[ε]/(εn+1))
such that composition of endomorphisms is distributive over it, and makes End(k[ε]/(εn+1))
into a ring.

Proposition 3.21. With the ring structure described above, End(k[ε]/(ε2)) is iso-
morphic to k.
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Proof. This is a consequence of Proposition 3.20 and Proposition 3.17.

Proposition 3.22. Let G be an algebraic group over an algebraically closed field k
with the group law morphism a : G×G→ G, and assume a local coordinate system is
chosen at the identity, which induces an isomorphism of Spec k[ε]/(ε2) with OG,e/m2.
Let f, g be endomorphisms of k[ε]/(ε2) and let Γ(f) and Γ(g) be graphs of induced
morphisms from the scheme Spec k[ε]/(ε2) to itself. Then the scheme cut out by the
ideal

(id×a ◦ p23)∗(p
∗
12If ⊗ p∗13Ig)

is the graph of the morphism from Spec k[ε]/(ε@) to itself induced by the endomor-
phism f + g, where addition in End(k[ε]/(ε2)) is in the sense defined above.

Proof. Denote T = Spec k[ε]/(ε2). Since f, g factor through T embedded into G, we
will identify them with corresponding endomorphisms of T , we will also denote the
restriction of a to T × T also by a. Let γf , γg : T → T be the maps defined as the
analogous maps in the proof of Lemma 3.17. Then

(id1×a ◦ p23)∗(p12If ⊗ p∗13Ig) =
= (id1×a)∗(p12If ⊗ (id2×γg)∗OT×T ) =
= (id1×a ◦ p23)∗(id2×γg)∗((id2×γg)∗p∗12If ⊗OT×T ) =
= (id1×a ◦ p23)∗(id2×γg)∗(id2×γg)∗p∗12If

Here we denote by expressions like id2×γg the maps that act as identity on the
second factor in the product T 3 and as γg on the rest. Since (id2×γg) ◦ p12 is the
identity morphism on T 2, and since If = (γf )∗OT , the last expression is equal to

(id1×a ◦ p23)∗(id2×γg)∗γfOG == γa◦(f,g)OG

And so, the subvariety cut out by this ideal sheaf in G2 is the graph of a ◦ (f × g) :
T → G, which is, by Proposition 3.20, the morphism from T to G associated to
f + g.

Propositions 3.20 and 3.22 in particular imply that if X + Y is regular at
(P1, P2, P3, P2 · P3) then

τ1(X + Y, (P1, P2 · P3)) = τn(X, (P1, P2)) + τn(Y, (P2, P3))

Unfortunately, this is not enough for our purposes, since W + V might be not
regular at P1, P2 + P3 even if X is regular at (P1, P2) and Y is regular (P1, P3).
Moreover, we will need to combine the sum of correspondences with composition of
correspondences, considering correspondences of the form X ◦ Y + Z.

We will therefore follow a strategy similar to that of Proposition 3.17: given
correspondences X, Y and Z from G to G, construct an auxiliary curve W in G5

which we will call affine combination Aff(X,Y, Z) of X,Y and Z that will have the
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necessary relative first-order slope at a certain point that projects to the possibly
non-regular point in G2. On the level of points this curve is given by

Aff(X,Y, Z) := {(a, b, c, d, c+ d) ∈ G4 | (a, b) ∈ X, (b, c) ∈ Y, (a, d) ∈ Z}

and scheme-theoretically it is the subscheme cut out by the ideal

(id1234×a ◦ p24)∗(p
∗
12IX ⊗ p∗23IY ⊗ p∗14IZ)

Proposition 3.23. Let G be a one-dimensional algebraic group over an algebraically
closed field k, and let a : G × G → G be the group law morphism. Let X ⊂
G2 ×N,Y ⊂ G2 be curves such that the slope of X relative to N is well-defined at
(P1, P2, P3) ∈ G and the slope of Y is well-defined at (P1, P4). Consider the curve
Z ⊂ G2 ×N ×G cut out by the ideal

(id1234×a ◦ p24)∗(p
∗
123IX ⊗ p∗14IY )

where id123 is identity map on the first three factors in G×G×N ×G×N .

Proof. As in Proposition 3.17 and 3.22, we reduce the statement to a statement
about graphs of maps from Spec k[ε]/(ε2), and apply Lemmas 3.12 and 3.13.

Let γf , γg : T → T be the maps defined as the analogous maps in the proof of
Lemma 3.17. Then

(id1×a ◦ p24)∗(p
∗
123If ⊗ p∗14Ig) =

= (id1×a)∗(p12If ⊗ (id23×γg)∗OT×T ) =
= (id1×a ◦ p24)∗(id23×γg)∗((id23×γg)∗p∗123If ⊗OT×T ) =
= (id1×a ◦ p24)∗(id23×γg)∗(id23×γg)∗p∗123If

Since (id23×γg) ◦ p123 is the identity morphism on T 3, and since If = (γf )∗OT , the
last expression is equal to

(id1×a ◦ p23)∗(id2×γg)∗(γf )∗OG == γa◦(f×g)OG

And so, the subvariety cut out by this ideal sheaf in G2 is the graph of a ◦ (f × g) :
T → G, which is, by Proposition 3.20, the morphism from T to G associated to
f + g.

Proposition 3.24. Let G be a one-dimensional algebraic group as in the previous
lemma. Let X,Y, Z be three curves in G2. Then

τ1(Aff(X,Y, Z)/G3, ()) = τ1(X, )τ1(Y, ) + τ1(Z, )

Proof. The statement to be proved is a combination of Proposition 3.17 and 3.23.
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4 Differential equations in formal power series

4.1 Uniqueness of solutions

We will be using the uniqueness of solutions of differential equations in formal power
series over a field of characteristic 0 on several occasions. Though it is well-known
we include the short proof for the sake of completeness. It is stated precisely in the
form needed for us.

Lemma 4.1 (Picard-Lindelöf for formal power series). Let k be a field of charac-
teristic 0. Let f(x, y) ∈ k[[x, y]] be a formal series. Then there exists a unique
y ∈ xk[[x]] such that

y′ = f(x, y)

where y′ is a formal derivative.

Proof. Denote f(x, y) :=
∞∑

i,j=0
fi,jx

iyj and define a map ϕ : xk[[x]] → xk[[x]] by

setting

y 7→
∫ x

0
f(α, y)dα :=

∞∑
i,j=0

fi,j

∫ x

0
αiyjdα

where
∫ x

0 denotes formal antiderivative with zero constant term. Then ϕ is well
defined, and we claim that it is a contracting map. Indeed, let v : k[[x]] → Z be
the valuation on the ring of formal series, ‖·‖v the associated norm ‖x‖v = e−v(x)

(which is trivially 1 on constants).

‖ϕ(y1)− ϕ(y0)‖v = ‖
∞∑

i,j=0

fi,j

∫ x

0
αi(yj1 − y

j
0)‖vdα ≤

1

e
‖y1 − y0‖v

As (k[[x]], || · ||v) is a complete metric space, the Banach fixed point theorem asserts
that ϕ has a unique fixed point. By definition of φ this fixed point is a solution of
the given differential equation.

4.2 Differential equations for slopes

On A1 there are natural local coordinate systems at any point x0 given by the
projective system of morphisms k[x] → k[ε]/(εn), x 7→ ε+x0. We would like to
have in a similar vein a coherent choice of local coordinate systems at every point
of a dense open subset of an arbitrary curve. Let U is a curve and suppose an étale
morphism u : U → A1 is chosen, then for any closed point y ∈ U the pullback
of x − u(y) ∈ k[x] gives canonical choice of uniformizer in OU,y, and hence local
coordinate systems are chosen at each such y; these are the local coordinate systems
that come from isomorphisms ÔU,y ∼= ÔA1,u(y). We will refer to such local coordinate
systems as liftings of local coordinate systems on A1.
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Lemma 4.2. Let u, v be two étale maps from U, V to A1, and let p be the product
map p := u× v : U × V → A2. Then for any n > 0, for any closed subscheme Z of
U × V and any point Q ∈ Z

τn(Z,Q) = τn(p(Z), p(Q))

where the local coordinate systems on U × V and on A2 are chosen as above.

Proof. By Lemma 3.12, S := SpecOZ,Q⊗OU×V,Q
k[ε, η]/(εn, ηn) is the graph τn(Z,Q),

and SpecOp(Z),p(Q)⊗OA2,p(Q)k[ε,η]/(εn,ηn) = p(S) is the graph of τn(p(Z), p(Q)). It is

left to notice that the map u × v induces an isomorphism between SpecOU×V,Q ⊗
k[ε, η]/(εn, ηn) and SpecOA2,p(Q) ⊗ k[ε, η]/(εn, ηn), by étaleness and the choice of
local coordinate systems, and furchermore, S and p(S) are isomorphic.

Lemma 4.3. Let Z ⊂ A2 be a curve defined by an equation h(x, y) = 0, Q ∈ Z a
regular point such that the projection of Z on the first factor is étale. Let f ∈ k[[x]]
be the formal power series expansion of Z in the natural local coordinate system on
A2 at Q. Then h(x, f) = 0.

Proof. Without loss of generality one may assume Q = (0, 0). Then the fact that
n-th order slope of Z is the endomorphism fn of k[ε]/(εn) means that the morphism
of algebras

k[x, y]→ k[ε]/(εn) x 7→ ε, y 7→ fn(ε)

factors through k[x, y]/h, i.e. h(x, fn) = 0 mod xn [It may be worth giving slightly
more detail why this is true. Maybe as an example following the definition of slope.
This is also used below, so would be good to have explicitly, and will also clarify the
definition of slope]. The conclusion of the lemma follows by passing to the limit.

Let U, V be open subsets of M , and let u : U → A1, v : V → A1 be étale maps.
Let Z ⊂ U × V be a regular curve such that the projection of Z on U is étale, and
for any point Q = (Q1, Q2) ∈ U × V the first order slope of Z at Q is well-defined
(with respect to the liftings of the natural local coordinate systems at u(Q1), v(Q2)
to Q1, Q2) provided by the Lemma 4.2). Let Z ′ ⊂ U × V × A1 be the closed curve
such that (x, y, s) ∈ Z ′ if s is the first order slope of Z at (x, y).

Proposition 4.4. In the above setting, Let k[[u, v]] ∼= ÔM2,Q be the isomorphism
given by the chosen local coordinate system at Q, and η : Spec k[[x]] → Z the mor-
phism given by the morphism of rings

η∗ : OZ,Q → k[[x]], u 7→ x, v 7→ f

where f ∈ xk[[x]]. Consider the morphism η′ : Spec k[[x]]→ U × V × A1 defined by
the morphism of rings

η′∗ : OU×V×A1,Q1×{0} → k[[x]], u 7→ x, v 7→ f, w 7→ f ′

where and f ′ is the formal derivative of f ′. Then η′ factors through Z ′.
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Proof. By Lemma 4.2 the slope of Z at Q is the same as the slope of (u× v)(Z) at
(u(Q1), v(Q2)), in their respective local coordinate systems. So it suffices to prove
the statement assuming that Z is a locally closed subset of A2. Without loss of
generality we may assume Q = (0, 0).

Let Z be defined by a polynomial h(u, v). The slope of Z at a point (x, y) ∈ A2

is given by the expression
∂h

∂u
(x, y)

∂h

∂v
(x, y)

where the derivatives are formal. Let f ∈ k[[x]] be a formal power series such that
h(x, f) = 0 as provided by Lemma 4.3. Then

d

dx
h(x, f) =

∂h

∂u
(x, f) +

∂h

∂v
(x, f)f ′

by the chain rule (Corollaire 1, [4], IV.§6), and
d

dx
h(x, f) = 0 by our choice of f .

Therefore
∂h

∂u
(x, f)

∂h

∂v
(x, f)

= f ′

and (x, f, f ′) ∈ Z ′.

Corollary 4.5. Let u : U → A1, v : V → A1 be étale. Let Q ∈ U × V and let X be
a curve incident to Q such that its projection to U is étale. Let Z ⊂ U × V ×A1 be
a closed subset that is étale over U × V . Assume X ′ ⊂ X × A1 is a closed subset
such that (x, y, s) ∈ X ′ if the first order slope of X at the point (x, y) is s, in the
local coordinate system which is a lifting of the natural local coordinate system at
(u(x), v(x)).

Then there exist formal power series h ∈ k[[x, y]] such that for any X as above,
with a fixed slope at Q, and such that X ′ ⊂ Z, and f = lim←−

n

τn(X,Q)(x) ∈ k[[x]], the

formal power series expansion of X at Q,

f ′ = h(x, f)

where f ′ is the formal derivative of f .

In the statement of this corollary Z should be regarded a “multi-valued distri-
bution”, a variety that specified what slopes X is allowed to have at a particular
point.

Proof. By the same reasoning as in the proof of Lemma 4.4 we can reduce the
situation to U, V open subsets of A1 and X a locally closed subset of A2.
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Let s0 = τ1(X, 0), we have the following commutative diagram

̂OA3,(0,0,s0)
∼= k[[x, y, z]]

f1 // ÔZ,0
∼
gww

f2 // ̂OX′,(0,0,s0)

ÔA2,(0,0)
∼= k[[x, y]] //

OO

ÔX,(0,0)

OO

where g is an isomorphism by étaleness of the projection of Z on A2 and the map f1

is given on generators as follows (identifying Ô via the g): x 7→ x, y 7→ y, z 7→ h for
some h ∈ k[[x, y]]. On the other hand, by Proposition 4.4, the compostion of maps
f1 and f2 is given on generators as follows x 7→ x, y 7→ f, z 7→ f ′. The conclusion of
the Corollary follows.

4.3 Divided power structures and an ODE for Gm

Later in Section 5 we will be looking at curves is the product of two copies of the
multiplicative group Gm×Gm, and in connection with this we will need to consider
formal power series solutions to the differential equation

y′ = a · 1 + y

1 + x
(1)

Below we collect some facts about solutions to this equation, especially that the
situation in positive characteristic requires a somewhat subtle treatment.

Let k be a field of characteristic 0. Consider binomial power series for a ∈ k,
defined as

(1 + x)a =
∞∑
k=0

a · (a− 1) . . . (a− k)

k!
xk

If a is integer then this is a polynomial, but the formal power series are well-defined
for any a ∈ k.

Proposition 4.6. Let k be a field of characteristic 0. The unique solution of the
differential equation (1) is the binomial power series (1 + x)a − 1. These formal
power series are algebraic over k[x] only if a is rational.

Proof. Observe that
d

dx
(1 + x)a = a(1 + x)a−1, then it’s easy to check that (1 + x)a

is a solution by direct substitution.
For the second point observe that if a is not rational, then powers of (1 + x)a

generate a module of infinite rank over k[x], and so (1 + x)a is not algebraic. One
uses the property

(1 + x)a(1 + x)b = (1 + x)a+b

which can be easily derived oven for a not rational (see Section 2 of [13] and references
therein).
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Even though uniqueness of solutions of ODEs fails in positive characteristic in
general, we can say something about solutions to the equation (1). Unfortunately,
the binomial power series are not even well-defined in positive characteristic, because
integers dividing the characteristic appear in denominators of the coefficients.

In order to remedy that, we consider solutions of differential equation (1) in a
bigger ring that k[[x]] maps to. This ring is the completion of the divided power
polynomials ring k〈x〉 of k[x] with respect to a certain filtration. For definition and
properties of divided power structures we refer to [2], see also [1].

The facts about k〈x〉 that we will need are few. The ring k〈x〉 is generated over
k by variables x[n], n ∈ N, subject to relations

x[n]x[m] =
(n+m)!

n!m!
x[n+m]

(x[0] customarily means 1).
Consider the homomorphism ϕ : k[x] → k〈x〉 that sends x to x[1]. The kernel

of this morphism is the ideal generated by xp. Define the derivation Dx on the
generators by Dxx

[n] = x[n−1]. The homomorphism ϕ has the following property:

ϕ(p′(x)) = Dxϕ(p(x))

Consider the completion k̂〈x〉 of k〈x〉 with respect to the filtration by the ideals
generated by sequences of elements of the form x, x[2], x[3], . . . , x[i]. The homomor-

phism ϕ above extends to a morphism sϕ : k[[x]] → k̂〈x〉, and the derivation Dx is

extended in a unique way to k̂〈x〉. The compatibility of derivations is preserved:
sϕ(p′(x)) = Dx sϕ(p(x)).

Define divided power binomial series

(1 + x)a =

∞∑
n=0

a · (a− 1) · . . . · (a− n+ 1)x[n]

in k̂〈x〉.

Lemma 4.7. Let k be a field of positive characteristic p > 0. The differential
equation (1) has a solution

(1 + x)a − 1

in Ęk〈x〉 if and only if a ∈ Fp. Let y1, y2 ∈ k[[x]] be two distinct solutions, then
y1 + 1

y2 + 1
belongs to k((xp)) and is non-constant.

Proof. Observe that if f ∈ k[[x]] is a solution to (1), then sϕ(f) is a solution to (1)
(with derivation interpreted as Dx).

If a ∈ Fp the binomial formal power series is a polynomial which is a solution to
equation 1 by direct verification. If a /∈ Fp then the divided powers binomial power
series is a solution to (1) by direct verification.
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Let y1, y2 be distinct solutions in k̂〈x〉 of the equation (1). Then

Dx

(
y1 + 1

y2 + 1

)
=
y′1(y2 + 1)− y′2(y + 1)

(y2 + 1)2
=
a(y1 + 1)(y2 + 1)− a(y2 + 1)(y1 + 1)

(1 + x)(y2 + 1)2
= 0

and therefore
y1 + 1

y2 + 1
is a constant. One checks that if

y1 + 1

y2 + 1
is a constant then it

must be 1. The same argument in k[[x]] yields that formal power series solutions

y1, y2 have the property that
y1 + 1

y2 + 1
∈ k((xp)).

If a ∈ Fp then an algebraic solution y1 must have the property that
y1 + 1

(1 + x)a
is

algebraic.

If a /∈ Fp, one checks that (1 + x)a ∈ k̂〈x〉 is not in the image of ϕ (since it has
x[n] terms for n ≥ p) and so there are no solutions in k[[x]].

5 Interpretation of a field from a pure-dimensional wit-
ness family

Restricting to the regular locus of M we may assume that M is regular, which will
be the standing assumption in the present section.

A reduct of M is non-locally modular if and only if there exists a faithful (in the
terminology of [40]; the term normal is commonly used in the literature) definable
family of curves X ⊂ M2 × T , i.e. a family such that dimT = 2, dimXt = 1 for
t ∈ U , dimT \ U = 1 and such that dim(Xt \Xs) ∪ (Xs \Xt) = 0 for t 6= s. Let M
be a one-dimensional algebraic curve. We consider a reduct (M,X) where X → T
is a 2-dimensional family of one-dimensional subsets of M2.

In this section we assume that X is a family of pure dimensional curves, namely,
that Xt has only components of dimension 1 for t generic. We first prove that then
(M,X) interprets a one-dimensional group. Then, assuming that there is a group
structure on M , we prove that (M,X) interprets a field.

Here is some notation that we will systematically use.
For any point Q ∈ M2, any family Y ⊂ S ×M2 of one-dimensional subsets of

M2 we denote Y Q → SQ the subfamily of one-dimensional sets containing the point
Q. For any correspondence α : M ` M denote α ◦ X → T the family such that
(α ◦X)t = α ◦Xt, similarly, X ◦ α denotes the family (X ◦ α)t = Xt ◦ α.

For two (definable) families Y1 ⊂ S1 ×M2, Y2 ⊂ S2 ×M2 of curves in M2 we
will denote Y1 ◦ Y2 the (definable) family parametrized by S1 × S2 with the curve
(Y1)s1 ◦ (Y2)s2 corresponding to parameter s1, s2; similarly, the notation Y1 +Y2 will
be used for families of curves in G2 where G has a structure of a group.

We will say that two sets Y and Z of the same dimension almost coincide if
dim(Y \ Z) ∪ (Z \ Y ) < dimY (= dimZ). We will say that a property holds for
almost all points of a definable set Y if it holds for a set of points Y ′ that almost
coincides with Y .
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5.1 Generically étale projections

In order to set in gear the machinery of slopes developed in the previous sections
we need projections to étale, at least generically. The following lemma asserts that
at least one of the “coordinate” projections of a curve X ⊂ M ×M does satisfy
this requirement. The statement of the lemma is obvious in characteristic 0, but
the existence of everywhere ramified morphisms in positive characteristic makes it
non-trivial in this case. Interestingly, the proof presented below does not explicitly
depend on the characteristic.

Lemma 5.1. Let M be a one-dimensional closed irreducible curve over a field of
positive characteristic. Let X ⊂ M ×M be an irreducible closed curve, and p1, p2 :
X → M be the projections on the respective coordinates. Then there exists a dense
open O ⊂M such that either p1 restricted to X∩O×M or p2 restricted to X∩M×O
is étale.

Proof. The lemma is clear if one of the projections pi is not dominant. So we may
assume that this is not the case.

Let ΩM/k, ΩX,k be the sheaves of modules of Kähler differentials over k of M
and of X respectively, and let p1, p2 : X →M be projections on the first and second
factor M in M ×M . Consider the natural map of sheaves

p∗1ΩM/k ⊕ p∗2ΩM/k → ΩX

which is easily seen to be surjective. Localising at the generic point χ of X we get
a surjective map, f , of k(X)-vector spaces

p∗1ΩM/k ⊗ k(χ)⊕ p∗2ΩM/k ⊗ k(χ)→ ΩX ⊗ k(χ).

Then f = f1 ⊕ f2 where fi : p∗iΩM/k ⊗ k(χ) → ΩX ⊗ k(χ) is a K(X)-linear map.
As f is surjective and dimK(X) ΩX ⊗ k(χ) = 1 at least one of f1 and f2 must be an
isomorphism.

Assume that for example f1 is an isomorphism. Then the sheaf ΩX/M of relative
differentials on X over M with respect to the first projection, is isomorphic over a
dense open set to the structure sheaf. So p1 is generically unramified. So the lemma
follows from generic flatness (Fact 5.14).

Lemma 5.2. Let M be a one-dimensional closed irreducible curve over a field of any
characteristic. Let X ⊂ T×M×M be a family of closed curves, and p1, p2 : X →M
the projections on the first, respectively second M . Then there exists a dense open
U ⊆ T and a dense open O ⊆M such that either p1 restricted to Xt ∩O×M or p2

restricted to Xt ∩M ×O is étale for all t ∈ U .

Proof. Follows from the previous lemma applied to the generic fibre of the family
X → T .
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5.2 Finding enough slopes in characteristic 0

In order to obtain a one-dimensional group configuration in the reduct we will con-
struct an M -definable family of curves incident to a point Q that lies on the di-
agonal variety ∆M ⊂ M × M such that for some n the n-slopes of curves at P
almost coincide with a one-dimensional subgroup of Aut(Spec k[ε]/(εn+1)) (viewed
as a finite-dimensional algebraic group). We will present two approaches, the first
uses Lemma 4.1 in a significant way, and works only in characteristic zero. It gives
a family whose first order slopes are almost all of Aut(Spec k[ε]/(ε2)). The second
approach works in any characteristic but gives a family whose n-th order slopes
almost coincide with a 1-dimensional subgroup of Aut(Spec k[ε]/(εn+1)) where, in
general, n may be greater than 1.

Lemma 5.3. Let M be an algebraic curve (not necessarily irreducible) over an
algebraically closed field of characteristic 0, and let X ⊂ S×M2 be a 2-dimensional
faithful family of closed irreducible one-dimensional subsets of M2. Then there exists
an open subset O ⊂M2 such that for any point Q ∈ O the set τ1(Xs, Q) is infinite.

Proof. Assume not. Then one can pick an Zariski open set O ⊂ M2, dense in an
irreducible component of M2, such that τ1(Xs, Q) is finite for all Q ∈ O.

Pick some étale projections u : U → A1, v : V → A1. By Lemma 4.2 the
projections (u× v)(Xs) will have finitely many slopes at points of some dense open
subset of A2, call it O′.

Let Z be the locally closed subset of U×V ×A1 such that a point (x, y, s) belongs
to Z if a curve from the family X incident to (x, y) has the slope s at (x, y) in the
natural local coordinate system. Shrinking O′ if necessary we may assume that Z
is étale over O′. Pick a point Q ∈ O′ and pick one of the finitely many first-order
slopes the curves from the family X take at Q, call it a. Then by Corollary 4.5 for
any curve Xt ⊂ U × V with τ1(Xt, Q) = a, the formal power series expansion f at
a point Q ∈ O′ must satisfy a differential equation

f ′ = h(x, f)

for some h ∈ k[[x, y]]. By Lemma 4.1 there is only one solution f ∈ xk[[x]] per slope
value at Q. But according to our assumption about X there are infinitely many
curves incident to Q, which is a contradiction.

Lemma 5.4. Let X ⊂ S ×M2 be a family of curves on M2. Then for a suitable
choice of s0 ∈ S there exists a point Q on the diagonal variety ∆M ⊂ M ×M such
that

{ τ1(Xs ◦Xs0 , Q) | s ∈ S }

the set of first order slopes of curves in the family (Xs ◦X)Q almost coincides with
Aut(Spec k[ε]/(ε2)).

Proof. Let U ⊂M2 be a dense open set as provided by the conclusion of the previous
lemma. If U ∩∆M 6= ∅, then pick a point Q in this intersection. By Lemma 5.3, the
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tangent spaces TQXt swipe a one-dimensional subset of TM2. Since distinct TQXt

correspond to distinct first order slopes (which are just the Plücker coordinates of
TQXt in some fixed local coordinates), the statement of the Lemma follows.

Otherwise consider the family Xs0 ◦X for some s0 ∈ S such that (id×Xs0)(U)∩
∆M is non-empty and the projections of Xs0 on both factors M of M2 are generically
étale. In order to satisfy the first condition Xs0 ∩∆M has to be finite, and since X
is a faithful family, all but finitely many of s0 will satisfy this requirement.

The second requirement is generically satisfied by the elements of the family X:
indeed, if it were otherwise, Xt would have to be generically tangent to a “vertical”
or “horizontal” vector fields, and by Lemma 4.1, it would follow that there is exactly
one curve incident to a generic point, which contradicts the fact that X is a two-
dimensional family.

5.3 Finding enough slopes in positive characteristic

Let M be an algebraic curve and X ⊂M2× T a family of subvarieties such that Xt

is of dimension 1 for generic t. For any family X of curves in M2 that we consider
in this section, we may assume without loss of generality, appealing to Lemma 5.2,
that for almost all elements Xt of the family the projection on the first factor M of
M ×M is étale.

If M is defined over a field of positive characteristic we can no longer guar-
antee the existence of one-dimensional families of curves that are incident to a
point Q and such that first order slopes at Q constitute a one-dimensional sub-
set of End(Spec k[ε]/(ε2)). The simplest example that illustrates this phenomenon
is the family of curves on A2 defined in the standard coordinates (x, y) by the equa-
tions y = x + axp + b. What we do instead is we find a family of curves incident
to some point Q such that the set of n-order slopes at Q almost coincides with
a one-dimensional subgroup of Aut(Spec k[ε]/(εn+1)) for some n. Note that this
approach works in characteristic 0 as well.

Lemma 5.5. Fix local coordinate systems at P1, P2, P3 ∈ M . Let Z1, Z2 ⊆ M2 be
curves with (P1, P2) ∈ Z1 and (P2, P3) ∈ Z2 both regular points on the respective
curves. Let f1, f2 ∈ k[[x]] be the associated power series expansions of Z1, Z2 at
(P1, P2) and at (P2, P3) respectively. Assume that f1 = gp

n

1 , f2 = gp
m

2 with g1, g2 ∈
k[[x]]. Then the power series expansion of Z1 ◦ Z−1

2 at (P3, P1) is given by h :=

(g1 ◦ g2)p
n−m

.

Proof. First let us prove the statement for M = A1 and P1 = P2 = P3 = 0. Since
Z1, Z2 are regular at (0, 0) only one irreducible component of each of Z1, Z2 passes
through (0, 0), so we may assume that Z1 and Z2 are irreducible. In that case it
is enough to notice that if a formal power series expansion of a curve at (0, 0) is of
the form fp

n
then this curve is a composition (in the sense of Section 3.1) of some

curve with formal power series expansion f and the graph of the n-th power of the
Frobenius morphism A1 → A1, and the necessary statement follows.
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For the general case, find projections pi : M → A1 that map Pi to 0 and such that
pi is étale in a neighbourhood of Pi. Since étale morphisms induce isomorphisms of
completed local coordinate rings, local coordinate systems at P1, P2, P3 are induced
by precomposing with p1, p2, p3 respectively. Observe that the slope of Z1 at (P1, P2)
coincides with the slope of (p1×p2)(Z1) and similarly for Z2 and (p2×p3)(Z2). Then
the statement follows from the statement for A1 which we have already proved.

Lemma 5.6. There exists a two-dimensional faithful family X ′ → T ′ and an open
dense subset U ⊂M ×M such that for any point Q ∈ U and for all t ∈ T ′ such that
Q ∈ X ′t the formal power series expansion of X ′t is not in k[[xp]].

Proof. We may assume thatM×M is connected, if not, the proof applies component-
wise to the connected components. We may also assume T irreducible (or otherwise
run the argument for some irreducible component of T ).

Fix local coordinate systems at all points of M × M (as in Subsection 4.2).
Irreducibility of M and T imply that there exists a unique n (possible 0) such that
for all Q ∈ U and all generic t ∈ XQ such that the formal power series expansion
of Xt at Q is a pn-th power but not pn+1-th power.

Consider the family X ′ = X ◦X−1
t0

where Q ∈ Xt0 for some Q ∈ U . Write the
power series expansions of Xt at Q as (ft)

pn (where ft is not a p-th power), then the
formal power series expansion of Xt ◦X−1

t0
at the point Q is, by Lemma 5.5, ft ◦f−1

t0
,

which is not a p-th power.

Lemma 5.7. There exists an open set U and a family of curves X ′ → T ′ such that
for any point Q ∈ U almost all t ∈ (T ′)Q the projections of X ′t on both factors M
are étale.

Proof. That the projection on, say, the first M is étale follows from Lemma 5.2 (the
second projection is étale in a neighbourhood of Q if the first-order slope is non-zero
by Proposition 3.10 ). In view of Lemma 5.6 we may assume that there exists an
open set V such that the formal power series expansion of almost all curves Xt at
any point Q ∈ V , are not p-th powers.

It is left to show that there exists U such that for all points Q ∈ U almost all
curves incident to Q have non-zero first order slopes. By an argument similar to the
proof of Lemma 5.3 we conclude that were this not the case then the formal power
series expansions f of any generic curve through at any generic point would satisfy
the differential equation f ′ = 0. As there is a unique solution to this differential
equation in xk[[x]] that is not a p-th power, and – by assumption – there are infinitely
many curves through every generic point, almost all of which are not p-th powers
this would lead to a contradiction.

Lemma 5.8. By passing to a family of compositions Xt0 ◦X for suitable t0 one can
find a point Q on the diagonal variety ∆M ⊂M ×M such that the conclusion of the
previous Lemma holds for Q.
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Proof. Indeed, let U be the set of points Q such that the formal power series expan-
sion of Xt at Q is non-zero (in some, and hence any, local coordinate system) for
almost all t ∈ TQ. If U ∩∆M 6= ∅, we are done. Otherwise, we need to find Xt0 such
that (id×Xt0)(U) ∩∆ 6= ∅ , or, which is the same, Xt0 ∩∆M 6= 0 , and such that
the projections from Xt0 on both factors M in M ×M are generically étale. Most
elements of the family X ′ → T ′ satisfy the latter requirement, because the formal
power series expansion of X ′t for a given t is not a p-th power when it is well-defined
(and it is well-defined generically by Lemma 5.1). It is clear then that one can find
an Xt that satisfies the former requirement.

Lemma 5.9. There exists a 2-dimensional family of curves X ′ → T ′ and a natural
number n, such that for some point Q ∈ ∆M the set {τn(X ′t, Q) : t ∈ TQ} almost
coincides with a 1-dimensional subgroup of Aut(Spec k[ε]/(εn+1)).

Proof. By the previous lemma we may assume that for some Q on the diagonal
almost all first order slopes of TQ are non-zero. Consider the family X ′ = X−1

t0
◦X

for some Xt0 with a non-zero first order slope. Then by Proposition 3.17 almost all
curves X ′t will have n the order slope id ∈ Aut(Spec k[ε]/(εn+1)) for n < n0 where
n0 is maximal such (possibly n0 = 1). Since both projections restricted to any of
our curves are étale, it follows from Lemma 5.3 that the n0-th order slopes of X ′t
form a one-dimensional subset of Aut(Spec k[ε]/(εn0+1)). By Proposition 3.10 they
form a group chunk.

Note that all the constructions involved in producing the family X ′ produce a
definable family. In case T is not irreducible, then the consructions have to be
repeted successively for all one-dimenional connected components of T .

5.4 The group and field configurations

In the strongly minimal context, certain configuration of (imaginary) elements are
known to exist only in the presence of a definable group or a definable field. We will
now describe this in more detail:

Definition 5.10 (Group configuration). Let M be a model of a strongly minimal
theory, and let dim the be associated dimension function on tuples.

x y

z

a

b

c

The set { a, b, c, x, y, z } of tuples is called a group configuration if there exists
an integer n such that

32



- all elements of the diagram are pairwise independent and dim(a, b, c, x, y, z) =
2n+ 1;

- dim a = dim b = dim c = n, dimx = dim y = dim z = 1;

- all triples of tuples that lie on the same line are dependent, and moreover,
dim(a, b, c) = 2n, dim(a, x, y) = dim(b, z, y) = dim(c, x, z) = n+ 1;

If G is a connected group definable in a strongly minimal theory, acting tran-
sitively on a strongly minimal definable set X, then one can construct a group
configuration as follows: let g, h be independent realisations of the generic type of
G and let x be a realisation of a generic type of X, then ( g, h, g · h, u, g · u, g · h · u )
is a group configuration.

Fact 5.11 (Hrushovski). Let M be a strongly minimal structure and let ( a, b, c, x, y, z )
be a group configuration. Then there exists a definable group G acting transitively
on a strongly minimal set X with the associated group configuration ( g, h, g ·h, u, g ·
u, g · h · u ) such that acl(a) = acl(g), acl(b) = acl(h), acl(g · h) = acl(c), acl(x) =
acl(u), acl(y) = acl(g · u), acl(z) = acl(g · h · u). In particular, dimG = dim a.

This follows from Main Theorem of [5] and the fact that infinitely definable
groups in stable theories are intersections of definable groups (see, for example,
Theorem 5.18[35]). The original proofs of these statements are contained in [18].

Fact 5.12. If in the statement of Fact 5.11 one requires that the canonical base of
tp(x, y/a) is interalgebraic with a and similarly for tp(z, y/b) and tp(z, x/c) then
the action of G on X is faithful.

Fact 5.13 (Hrushovski). Let G be a group of Morley rank n > 1 acting transi-
tively and faithfully on a strongly minimal set X. Then there exists a definable field
structure on X and either n = 2 and G ∼= GaoGm(K), or n = 3 and G = PSL2(K).

The original reference is [18], an exposition can also be found in [35] (Theorem
3.27).

Note that the crucial point in the proof of Fact 5.13 is establishing that G
isomorphic to Ga o Gm(K) or PSL2(K), and in case G and X are definable in an
algebraically closed field (the context in which this theorem will be applied in this
article) or a Zariski structure of an algebraic curve, this statement can be proved
directly and much more easily.

5.5 Flat families and intersections

As already explained, identifying M-definably when two curves (coming from two
distinct but fixed definable families) are tangent at a point Q ∈ M2 is the key to
reconstructing the multiplictative and additive groups of the field. As we will see,
this approach can only work if we can show that tangency of two definable curves
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incident to Q is a non-generic phenomenon. In the present subsection we develop
the tools allowing us to show that this can, indeed, be achieved.

Given a strongly minimal family X → T of M-definable plane curves incident
to a point (Q,Q) ∈ M2 we form the composition family X ◦X and normalise it to
obtain a family Y → S. Our aim is to construct an M-definable function from S
to T taking s to t if Xt has the same slope at (Q,Q) as Ys. This will allow us to
construct a group configuration based on anM-definable function T×T → T , which
by the results of subsection 3.17 corresponds to multiplication in K. The main goal
of this Subsection is, therefore, given two definable families of curves (incident to a
fixed point (Q,Q)), X and Y , to detect M-definably and uniformly when a curve
Xt and a curve Ys have the same slope at (Q,Q). We obtain a good approximation
of this goal in Proposition 5.22 under suitable flatness assumptions. This is one of
the main technical results of the paper.

We start with recalling a few well-known geometric facts.

Fact 5.14 (Generic Flatness, Corollaire IV.6.11 in [16]). Let Y be an integral locally
Noetherian scheme and let f : X → Y be a morphism of finite type. Then there
exists a dense open subset U ⊂ Y such that the restriction of f to f−1(U) is flat.

Fact 5.15 (Local flatness criterion, Proposition I.2.5 in [30]). Let B be a flat A-
algebra and consider b ∈ B. If the image of b in B/mB is not a zero divisor for any
maximal ideal m of A then B/(b) is a flat A-algebra.

Fact 5.16 (Zariski’s Main Theorem, Theorem 1.8 in [30]). If Y is a quasi-compact
scheme and f : X → Y is a separated quasi-finite morphism, then f factors as a
composition f̄ ◦ ι where f̄ is finite and ι is an open immersion.

For the purposes of the present paper we fix the following set the following set
of conventions:

Definition 5.17. Let M be a curve over an algebraically closed field.

1. a family of curves in M2 we understand a locally closed subset X ⊆ M2 × T
for some T such that the fibres (which are not assumed irreducible) Xt are of
dimension 1 for all t ∈ T ;

2. we call a family of curves pure-dimensional if all irreducible components of
fibres Xt are of the same dimension for all t ∈ T ;

3. the family of scheme theoretic intersections of two families of curves X ⊆
M2×T and Y ⊆M2×S is the surjective morphism (X×S)×M2×T×S(Y ×T )→
T ×S (that is, the family of closed subschemes of M2 whose fibre over (s, t) is
Xt ×M2 Ys).

Lemma 5.18. Suppose that M is a regular curve. Let X ⊂M2×T , Y ⊂M2×S be
two families of pure-dimensional curves in M2, and suppose that X is flat over T .
Then the family of scheme-theoretic intersections of X and Y is flat over T ×S \D
where D is the set of pairs (t, s) such that the intersection Xt ∩ Ys infinite.
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Proof. Since flatness is local on the source we may assume that all varieties involved
are affine.

Consider the subvarieties X×S, Y ×T of M2×T ×S. Suppose first that Y is a
hypersurface in M2 × S. Since regular local rings are unique factorization domains,
the scheme-theoretic intersection of X×S and Y ×T is a closed subscheme of X×S
that is locally the zero locus of a regular function f on M2 × T × S restricted to
X × S. By Fact 5.15, this closed subset is flat precisely over the complement of the
subvariety of T × S consisting of those points (t, s) where f does not vanish on an
irreducible component of Xt × {s}. I.e., T × S is flat on the subvariety of points
(s, t) where the intersecion Xt ∩ Ys is finite.

Since Y is a family of pure-dimensional curves, it is a dense open subset of a
hypersurface. If Y is a proper dense open subset of a hypersurface sY , then the above
is true for the family of scheme-theoretic intersections of Xt and sYs. The family of
scheme-theoretic intersections of Xt and Ys is a dense open subset of it, and so is
flat, since flatness is local on the source.

Lemma 5.19. Let f : X → Y be a flat quasi-finite morphism. Then the function

n : Y → Z y 7→ #(f−1(y))

is lower semi-continuous, i.e. the lower level sets { y | #(f−1(y)) ≤ n } are closed.

Proof. Follows from (i) of Proposition 15.5.1 of EGA IV.3 [14] and the fact that flat
morphisms of finite type are universally open (see EGA IV [14], 2.4.6).

Lemma 5.20. Let f : X → Y be a flat quasi-finite morphism. Then, denoting the
fibre over a point y ∈ Y as Xy, the function

l : Y → Z y 7→ dimk(y)H
0(Xy,OXy)

is lower semi-continuous. If f is finite, then l is locally constant.

Proof. Recall that a finite morphism is projective (EGA II 6.1.11 [14]). Thus, if f is
finite the lemma follows from the fact that dimk(y)H

0(Xy,OXy) is the constant term
of the Hilbert polynomial, and the Hilbert polynomial of a flat projective family is
locally constant (cf. EGA III 7.9.11).

In the general case, by Zariski’s Main theorem f factors as a compostion f̄ ◦ ι
where f̄ : X̄ → Y is finite (and hence projective) and ι : X ↪→ X̄ is an open
immersion. Let Zi be connected components of X̄ \X. By the previous paragraph
the function y 7→ H0((Zi)y,O(Zi)y) is constant on f(Zi). Therefore those lower level
sets { y ∈ Y | l(y) ≤ n } that are properly contained in Y consist of unions of
Zi.

Lemma 5.21. Let Y be an irreducible variety and let f : X → Y be a flat quasi-
finite morphism. Let N1, N2 be the values of the semi-continuous functions l, n of
Lemmas 5.19,5.20 on some dense open subset of Y . Then

{ y ∈ Y | dimk(y)H
0(Xy,OXy) < N1 } ⊂ { y ∈ Y | #f−1(y) < N2 }

35



Proof. Factor f according to Zariski’s Main Theorem as the composition of a finite
f̄ : X̄ → Y and an open immersion ι : X ↪→ X̄. The number dimk(y)H

0(Xy,OXy) is
constant on X̄ by Lemma 5.20. Suppose y is such that dimk(y)H

0(Xy,OXy) < N1,
then f−1(y) ( f̄−1(y) and hence #f−1(y) < N2.

Now we can prove the main result of the present subsection describing the be-
haviour of intersection multiplicities in families of curves. The setting is as follows.
We fix a curve M and a point (P1, P2) ∈ M2, with a fixed local coordinate system
associated to it. We fix two families of curves X ⊂ M2 ×N × T and Y ⊂ M2 × S.
In the applications X and Y will be M-definable and M-irreducible, and the first
family will be a obtained as a result of “partial composition” of two families of curves
(as in Proposition 3.17), or by forming an an affine combination of three families of
curves (see Section 3.2). We assume, moreover, that all curves Xt are incident to a
fixed point Q ∈ M2 ×N , and that all curves Ys are incident to p(Q); in the appli-
cations this will be achieved by fixing higher dimensional families and working with
subfamilies passing through the point Q. We want to identify those parameters t, s
such that τn(Xt/N,Q) = τn(Ys, p(Q)), where p is the projection p : M2 ×N →M2.
The reason to consider the relative slope and families of curves in M2×N is discussed
in Section 3.1 after the Definition 3.15.

In this context there is a natural number, a such that |Xt ∩ Ys ×N | = a for all
t, s in a dense open subset of T ×S. We will also assume that there exists a natural
number n, smallest satisfying that τn(Xt/M,P ) 6= τn(Ys, P ) on a dense open subset
of S×T . We point out that in the applications, at this stage, we cannot assure that
this can be done M-definably. We will circumvent this problem by applying the
analysis to each open irreducible component of S×T separately. We will, therefore,
assume that S and T are irreducible.

In the next proposition we show that, in the setting described above, for each
pair (t, s) assumed generic in the parameter variety T × S, if a curve from X is
“tangent” to a curve from Y at P in the sense that τn(Xt/M,Q) = τn(Ys, p(Q))
then, |Xt ∩ Ys ×N | < l. This will allow us to recover tangency M-definably, up to
finitely many false positives, which will be enough for our purposes.

Proposition 5.22. In the setting described above, let n be the minimal number such
that for generic t, s

τn(Xt/N,Q) 6= τn(Ys, p(Q))

Consider the family of intersections X×M2×N Y ×N ⊂M2×N×T×S, and assume
that X×M2×N Y ×N is proper over T ×S. Then there exist dense open T ′ ⊂ T and
S′ ⊂ S such that

{(t, s) ∈ T ′ × S′ : τn(Xt/M,Q) = τn(Ys, p(Q))} ⊆ {(t, s) : #(Xt ∩ Ys ×N) < a}.

Proof. By fact Fact 5.14 there exist T ′ ⊂ T , S′ ⊆ S dense open such that X is flat
over T ′ and Y is flat over S′. Let X ×M2×N Y× be the family of scheme-theoretic
intersections of Xt and Ys (with possibly non-reduced structure), it has a natural
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morphism to T ′×S′, and let U ⊂ T ′×S′ be the set of (t, s) such that (X×M2×NY )(t,s)

is 0-dimensional. Let Z denote the the preimage of U in X ×M2×N Y .
The variety Z is flat over U by Lemma 5.18 and the definition of U . Denote the

projection Z → U by pU . Let Z0 be the irreducible component of Z supported at
{P} × U , and let W be the complement of Z0 in Z.

Below we will use subscripts as follows to denote scheme-theoretic fibres: Zt,s =
Z ⊗ k(t, s) where k(t, s) is the residue field of (t, s) ∈ U .

In this notation, we have to show that

{ (t, s) ∈ U | τn(Xt/N,Q) = τn(Ys, p(Q)) } ⊆ { (t, s) ∈ U | #Zt,s < a }

where a = #Zt,s for (t, s) ∈ U generic.
Let us first prove this statement when the morphism Z → U is finite. Then the

number dimH0(Zt,s,OZt,s) is constant for all (t, s) ∈ U by Lemma 5.20. Note that

dimH0({Q},OZt,s) + dimH0({Q},OZt,s) = dimH0(Z,OZt,s) = b and
#Zt,s = #Wt,s − 1

For generic t, s, if we identify Zt,s with a closed subscheme of M2 ×N

dimH0({Q},OZt,s) = n

therefore dimH0(Wt,s,OWt,s) = n− b.
If t, s is such that τn(Xt/N,Q) = τn(Ys, p(Q)) then

dimH0({Q},OZt,s) > n

and therefore dimH0(Wt,s,OWt,s) < n− b.
Applying Lemma 5.21 to W we get

{ (t, s) ∈ U | dimH0(W,OWt,s < n− b } ⊆ { (t, s) ∈ U | #W < a− 1 }.

The latter set is the same as { (t, s) ∈ U | #Z < a } which yields the statement of
the Propsition.

If Z → U is not finite then compactify it using Zariski’s Main Theorem: find
a finite morphism Z̄ → U such that Z is an open subscheme of Z, let ĎW be the
complement of Z0 in Z̄. Note that a = #Z̄t,s, b = dimH0(ĎW,O

ĎWt,s
) for t, s generic,

and we have just shown that

{ (t, s) ∈ U | dimH0(ĎW,O
ĎWt,s

< n− b } ⊆ { (t, s) ∈ U | #Z̄ < a }.

Observe that

{ (t, s) ∈ U | dimH0(W,OWt,s < n− b } =
= { (t, s) ∈ U | dimH0(ĎW,O

ĎWt,s
< n− b } ∪ pU (Z̄ \ Z)

{ (t, s) ∈ U | # sZ < a } = { (t, s) ∈ U | #Z < a } ∪ pU (Z̄ \ Z)

which implies

{ (t, s) ∈ U | dimH0(W,OWt,s < n− b } ⊆ { (t, s) ∈ U | #Z < a }.

which in turn implies the statement of the Proposition.
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5.6 Interpreting a one-dimensional group

Our strategy is to find a point Q on the diagonal of M ×M with a definable one-
dimensional family of curves incident to Q such that the associated n-th order slopes
at Q for some n form a one-dimensional subset of Aut(Spec k[ε]/(εn+1)), and then
use this family to construct a one-dimensional group configuration.

Theorem 5.23. Let M = (M,X) be a non-locally modular reduct of an algebraic
curve M over an algebraically closed field, with X → T a 2-dimensional faithful
family of pure-dimensional curves. Then M interprets a one-dimensional group.

Proof. Let P = (Q,Q) ∈ M2 be a point such that for some n the image of τP :
TP → Aut(Spec k[ε]/(εn+1)), t 7→ τn(Xt, P ) is one-dimensional. Such a point is
guaranteed to exist by Lemmas 5.3 and 5.4 (or Lemmas 5.9 and 5.8) .

Pick a one-dimensional M-stationary (i.e. of M-Morley deree 1) component of
TP , call it W , and let t, s be independent realisations of the generic type of W . We
may also assume that W is irreducible, or otherwise run the argument below for one
of the irreducible components of W .

Let u be a point of W such that

τn(Xu, P ) = τn(Xs, P )τ(Xt, P ).

Such u exists since t and s are generic in a one-dimensional subgroup of Aut(k[ε]/(εn+1)
by Lemma 5.3 or 5.9, so the right-hand side value is generic in the same subgroup,
and therefore is in the image of τP .

Let us show that u is algebraic over t, s. Denote the natural projections on factors
M3 →M,M3 →M2 as p1, p2, p3, p12, p23, p13, respectively. Denote P ′ = (Q,Q,Q) ∈
M3, and consider the family X ×p2,p1 X ⊂M3 ×W ×W where a fibre over a point
(u, v) ∈W ×W is Xu×p2 Xv. By Proposition 3.13 τn(p−1

13 (Xw)/M,P ′) = τn(Xw, P )
for any w ∈W . By Proposition 3.17

τn(Xt ×p2,p1 Xs/M,P ′) = τn(Xt, P )τn(Xs, P )

(the relative slope is with respect to the second factorM inM3). By Proposition 5.22
the definable set

{ w ∈W | #(Xt ×p2 Xs ∩ p−1
13 (Xw)) < N }

where N = #(Xt∩Xs), contains the set of parameters v ∈W such that τn(Xw, P ) =
τn(Xt, P )τn(Xs, P ).

In a similar vein, let y be a point of W independent from t and let x, z be points
of W such that

τn(Xx, P ) = τn(Xt, P )τn(Xy, P ), and τn(Xz, P ) = τn(Xs, P )−1τ(Xy, P )

Then
τn(Xu, P ) = τn(Xx, P )τ(Xz, P )
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By the same argument as above, x is algebraic over y and t, and z is algebraic over
s and y, in the sense of M. This implies that

x y

z

t

s

u

is a group configuration.
Applying Fact 5.11 we obtain a one-dimensional group interpreted in M.

5.7 Families of curves in reducts of one-dimensional groups

In the previous subsection we showed that a non-locally modular reduct of the full
Zariski structure on an algebraic curve M over an algebraically closed field interprets
a strongly minimal group, call it H. The group H is interpretable in an algebraically
closed field and therefore is definably isomorphic to a 1-dimensional algebraic group
by a model-theoretic version of a theorem of Weil on birational group laws (see [33],
[39], [38]). SinceM is non-locally modular, so is H (with the full structure induced
fromM). Thus, by replacing M with H, we may assume thatM expands a group.
In this setting our goal is to construct a second group configuration, which will allow
us to reconstruct the field in M.

Let H be a connected one-dimensional algerbaic group, and let Z ⊂ H2 be an
irreducible one-dimensional subset that is not a coset (such sets are components of
definable sets that witness non-local modularity in reducts of groups by a theorem
of Hrushovski and Pillay [24]). We prove that shifts of Z incident to the identity
of H2 have infinitely many distinct first order slopes at the identity. This will be
necessary to construct a two-dimensional group configuration. In characteristic 0, an
alternative way to obtain a family of curves with enough distinct first-order slopes
is to consider a two-dimensional family of curves in H2 and apply Lemma 5.3, then
shift the family obtained to the identity. Note that the proof of following lemma is
characteristic-free.

Lemma 5.24. Let A be an elliptic curve and let Z be a closed one-dimensional
irreducible subset of G = A2. The tangent spaces to G at any point g can be identified
with T0H via the isomorphism dλg : T0G→ TgG, where λg(x) = g · x. Suppose that
for any z ∈ Z the tangent space TzZ ⊂ T0G is constant. Then Z is a coset of a
closed subgroup of G.

Proof. Since Z is a projective curve with a trivial tangent bundle, it is an elliptic
curve itself. Since any algebraic variety morphism between Abelian varieties with
finite fibres and preserving the identity automatically preserves the group structure
by Rigidity Theorem, Z is a coset of an Abelian subvariety of G.
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Let H = Ga or H = Gm. Let Z be a locally closed one-dimensional irreducible
subset of G = H2 such that the restriction to Z of the projection on the first factor
H is étale (possibly, after removing finitely many points). For any x ∈ Z denote the
translate

Yx := Z · x−1 = { u · x−1 ∈ G | u ∈ Z }
This defines a family Y → Z of curves incident to (e, e), parametrized by Z.

Lemma 5.25. In the setting as above, assume H is defined over a field of char-
acteristic 0. Fix a local coordinate system at e ∈ H so that the slope of any curve
incident to O = (e, e) is well-defined. Suppose that the slope τ1(Yx, O) is constant
for x in an open neighbourhood of O. Then Z coincides with an open subset of a
closed subgroup of G.

Proof. Without loss of generality we may assume that O ∈ Z, .
Let H = Gm, and let Z be cut out by an equation h(x, y) = 0. Then Y(x0,y0) is

cut out by the equation h(x · x0, y · y0), and

τ1(Y(x0,y0), O) =
∂xh(x · x0, y · y0)

∂y(x · x0, y · y0)

∣∣∣∣
x=1,y=1

=
∂xh(x0, y0) · x0

∂yh(x0, y0) · y0

Therefore, if f is the expansion of Z into formal power series at the identity then by

Proposition 4.4
∂xh(x, f)

∂yh(x, f)
is f ′, the formal derivative of f . If τ1(Yx, O) is constant

for x is the neighbourhood of (e, e), then for some a ∈ k the formal power series f
satisfies the differential equation

f ′ · x+ 1

f + 1
= a

Similarly, for the additive group (H = Ga)

τ1(Y(x0,y0), O) =
∂xh(x+ x0, y + y0)

∂yh(x+ x0, y + y0)

∣∣∣∣
x=0,y=0

=
∂hx(x0, y0)

∂yh(x0, y0)

and the corresponding differential equation is

f ′ = a

The series f = ax satisfies the second equation, and by Lemma 4.1 this is the
only solution with zero constant term. It follows that Z is defined by the same
equation, and so is a subgroup of Ga ×Ga.

In case H = Gm it follows from Lemma 4.6 that f = (x+ 1)a − 1 is the unique
formal power series solution of the differential equation

y′ = a
f + 1

x+ 1

and is only integral over k[x] a is rational, in which case f is a formal power series
expansion at (1, 1) of an irreducible component of a curve defined by an equation
yn = xm. But all such curves are subgroups of Gm ×Gm.
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Lemma 5.26. Let f, g be formal power series expansions at (0, 0) of curves X,Y in
Ga×Ga. Then the formal power series expansion of X + Y (where + is understood
in the sense of Definion 3.18) is f + g.

Proof. Follows from Proposition 3.9 and the definition the group law on Ga.

Lemma 5.27. In the same setting, suppose that H = Ga is defined over a field of
positive characteristic. Suppose that Z is not a coset of a subgroup of G and that the
projection of Z on the first factor H is étale on some dense open set. Then there
exists a family of curves incident to a point Q ∈ ∆M such that the set of first order
slopes at Q almost coincides with Aut(Spec k[ε]/(ε2)).

Proof. Without loss of generality we may assume that (0, 0) ∈ Z. Let f be the
formal power series expansion of Z at (0, 0). Then by the same argument as in the
proof of Lemma 5.25 f satisfies the differential equation

f ′ = a

The solutions of the differential equation are of the form ax+ g, where g belongs to
mp where m is the maximal ideal m of k[[x]], by direct observation. If f = ax then
Z is a coset, contradicting our assumption. The since Z is not a coset the formal
power series expansion of some of its shifts, Z ′ = Z · (x0, y0) would have a formal
power series expansion of the same form, let us say ax+ g′, where g ∈ mp.

By Proposition 3.22 (see also Remark 3.2) the formal power series expansion of
Z − Z ′ is g − g′. Let n be the largest integer such that g − h ∈ mpn . In a similar
manner consider two other shifts of Z, call then W and W ′, and obtain W −W ′
with formal power series expansion h− h′ in mpn

Then by Lemma 5.5 (Z − Z ′) ◦ (W −W ′)−1 has power series expansion in mpl ,
where l < n. Repeating this procedure several times we will obtain a definable curve
that has a power series expansion in m but not in mp. Since it will not be of the
form ax, the slopes at (0, 0) of its shifts will take infinitely many values.

Lemma 5.28. Let f, g be formal power series expansions at (1, 1) of curves X,Y in
Gm×Gm. Then the formal power series expansion of X+Y (where + is understood
in the sense of Definion 3.18) is f + g + fg.

Proof. Follows from Proposition 3.9 and the definition the group law on Gm.

Lemma 5.29. Let f be formal power series expansion at (1, 1) of a curve X in
Gm × Gm. Then for any x0 ∈ Gm there exists y0 such that (x0, y0) ∈ X and the
formal power series expansion of a shift X · (x0, y0)−1 is of the form f(x+ x0).

Proof. Follows from Proposition 3.9.

Lemma 5.30. In the same setting, suppose that H = Gm is defined over a field of
positive characteristic. Suppose that Z is not a coset of a subgroup of G and that the
projection of Z on the first factor H is étale on some dense open set. Then there
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exists a family of curves incident to a point Q ∈ ∆M such that the set of first order
slopes at Q almost coincides with Aut(Spec k[ε]/(ε2)).

Proof. Without loss of generality we may assume that (0, 0) ∈ Z. Let f be the
formal power series expansion of Z at (0, 0). Then by the same argument as in the
proof of Lemma 5.25 f satisfies the differential equation

(x+ 1)a =

∞∑
k=1

(
a

k

)
xk

for some element a ∈ k.
By Lemma 4.7 the solutions of the differential equation are of the form a(1 +

x)a+g where g ∈ k[[xp
n
]]. If f = a(1+x)a for a rational then Z is the curve defined

by ym = xn where a =
m

n
. But this is a coset, contradicting our assumptions.

The solutions of the differential equation are of the form ax+ g, where g belongs
to mp where m is the maximal ideal m of k[[x]], by direct observation. If f = ax then
Z is a coset, contradicting our assumption. The since Z is not a coset the formal
power series expansion of some of its shifts, Z ′ = Z · (x0, y0) would have a formal
power series expansion of the same form, let us say ax+ g′, where g ∈ mp.

By Proposition 3.22 (see also Remark 3.2) the formal power series expansion of
Z − Z ′ is g − g′. Let n be the largest integer such that g − h ∈ mpn . In a similar
manner consider two other shifts of Z, call then W and W ′, and obtain W −W ′
with formal power series expansion h− h′ in mpn

Then by Lemma 5.5 (Z − Z ′) ◦ (W −W ′)−1 has power series exponsion in mpl ,
where l < n. Repeating this procedure several times we will obtain a definable curve
that has a power series expansion in m but not in mp. Since it will not be of the
form ax, the slopes at (0, 0) of its shifts will take infinitely many values.

5.8 Interpreting the field

With the preparations made in the previous section we can now show that a non-
locally modular reduct of one-dimensional algebraic group interprets a field. This
strengthens the main result of [28].

Lemma 5.31. Let M = (G, ·, . . .) be a reduct of a one-dimensional connected al-
gebraic group (G, ·) with identity e. Suppose that Z ⊂ M2 is a one-dimensional
definable subset which is not a Boolean combination of closed subgroups of G2. Fix
some local coordinate system at the identity of G. Consider the map

τ : Z → End(Spec k[ε]/(ε2)), t 7→ τ1(Z · t−1, (e, e))

Then the image of τ in End(Spec k[ε]/(ε2)) ∼= A1 is one-dimensional.

Proof. By quantifier elimination, Z is of the form
⋃
Zi \Wi where Zi, Wi are closed

subsets of G. It follows from Lemma 5.25, 5.24, 5.27 or 5.30 (depending on G and
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the field characteristic) that τ is non-constant on Zi, therefore the image of any of
Zi is one-dimensional in End(Spec k[ε]/(ε2)). Therefore Im τ is one-dimensional in
End(Spec k[ε]/(ε2)).

Theorem 5.32. Let M = (G, ·, . . .) be a reduct of one-dimensional algebraic group
(G, ·) over an algebraically closed field of any characteristic. Suppose that Z ⊂ M2

is a one-dimensional definable subset which is not a union of cosets of subgroups of
G2. Then M interprets a field.

Proof. For any x ∈ Z denote the translate

Yx := Z · x−1 = { u · x−1 ∈ G | u ∈ Z }

and denote P = (e, e). We may without loss of generality assume that Z is irre-
ducible, or otherwise run the argument below for one of the irreducible components
of Z.

Take a1, a2, b1, b1, u ∈ Z generic and pairwise independent. Let c1, c2 be such
that (all slopes are taken at P )

τ1(Yc1) = τ1(Ya1)τ1(Yb1)

τ1(Yc2) = τ1(Ya2)τ1(Yb1) + τ(Yb2)

Since the image of the function x 7→ τ1(Yx, P ) for x ranging in Z is one-dimensional
by Lemma 5.31, the values of expressions in the right-hand-side are generic in
End(Spec k[ε]/(ε2)) as parameters vary. Therefore τ1(Ya1)τ1(Yb1) and τ1(Ya2)τ1(Yb1)+
τ(Yb2) are generic, and c1, c2 with such slopes can be picked in Z.

Let z, v be such that

τ1(Yz) = τ1(Ya1)τ1(Yu) + τ1(Ya2)

τ1(Yv) = τ1(Yb1)−1τ1(Yu)− τ1(Yb2)

By a similar reasoning, z, v are generic. It also follows form the way c1, c2, z, v were
defined that

τ1(Yz) = τ1(Yc1)τ1(Yv) + τ1(Yc2)

We will now show that (c1, c2) is algebraic over (a1, a2) and (b1, b2) in the sense
ofM. Denote P ′ = (e, e, e), P ′′ = (e, e, e, e, e). By Propositions 3.17, 3.24, 3.20 and
Lemma 3.13

τ1(Ya1 ×p2 Yb1/G, P ′) = τ1(Ya1 , P )τ1(Yb1 , P ),

τ1(Aff(Ya2 , Yb1 , Yb2)/G3, P ′′) = τ1(Ya2 , P )τ1(Yb1 , P ) + τ1(Yb2 , P )

Let N1 = #(Yc1 ∩ Ya1 ◦ Yb1), N2 = #(Yc2 ∩ Aff(Ya2 , Yb1 , Yb2)) for a1, a2, b1, b2,
c1, c2 ∈ Z generic and independent. Since the number of intersections is a first-order
property, it does not matter what particular parameters ai, bi, ci we take as long as
they are generic and independent. By Proposition 5.22 the M-definable set

{ w ∈ Z | #(p−1
13 (Yw) ∩ Ya1 ×p2 Yb1) < N1 }
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contains c1 and by definition of N1 is finite. By Proposition 5.22 again the M-
definable set

{ w2 ∈ Z | #(p−1
15 (Yw) ∩Aff(Ya2 , Yb1 , Yb2)) < N2 }

contains c2 and by definition of N2 is finite. Arguing in a similar fashion, by appli-
cation of Proposition 5.22, we deduce that c1 and c2 are algebraic over z, v.

It follows from the discussion above that

z u

v

(a1, a2)

(b1, b2)

(c1, c2)

constitutes a group configuration. Therefore, by Fact 5.11 there exists a two-
dimensional group definable in (G, ·, Z) that acts transitively on a one-dimensional
set. One checks that the conditions of the Fact 5.12 are verified as well. By Fact 5.13,
the group G is isomorphic to the affine group Ga(k)oGm(k) of an infinite definable
field k.

Theorem 5.33. Let (M,X) be a non-locally modular reduct of an algebraic curve
M over an algebraically closed field M of characteristic 0, with X → T a normal
family of pure-dimensional curves. Then M interprets a field.

Proof. Conjunction of Theorem 5.23 and Theorem 5.32.

6 Getting rid of zero-dimensional components

In the previous section we defined a group and then a field inM under the assump-
tion that the generic fibre of X has no 0-dimensional connected components. The
goal of this section is to justify this assumption. We do so by constructing in M a
2-dimensional faithful family with a generic elemnt of the family a pure-dimensional
one-dimensional set.

In this section, as it is important to distinguish between genericity in the sense
of the reduct, M, and in the sense of the full Zariski structure on M , we use reduct
generic for the former, and generic or field generic for the latter. Note that being
reduct generic implies being generic but not, a priori, vice versa. Similarly, aclM(·)
denotes the (model theoretic) algebraic-closure operator in the sense of M while
acl(·) will denote the field theoretic algebraic closure.

Drawing upon a tradition in model-theoretic literature, one-dimensional defin-
able sets in M2 will be refereed to as “plane curves”.
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6.1 Preliminaries

For a 1-dimensional definable Z set denote Z1 the union of its 1-dimensional con-
nected components, Z0 the union of its 0-dimensional components, ĎZ1 the closure
of Z1 and Fr(Z) = ĎZ1 \ Z1 . The same notation will apply for families: if Y → S is
a family of one-dimensional sets, then e.g. Fr(Y )→ S is the family that consists of
frontiers of elements of the family Y .

The results of this section use only basic intersection theory and are, to a large
extend, independent from previous sections. Our main results (stated in somewhat
greater generality than we actually need) is:

Theorem 6.1. Let M be an algebraic curve over an algebraically closed field k. Let
M be a strongly minimal non-locally modular reduct of the k-induced structure on
M . Let S ⊆M2 be an M-definable strongly minimal set. Then Fr(S) ⊆ aclM([S]),
where Fr is taken with respect to the Zariski topology and [S] is a canonical parameter
for S.

This theorem follows from the following, somewhat more technical result:

Proposition 6.2. Let M be as above. Let X → T be a faithful M-definable family
of curves with dim(T ) ≥ 3. Assume, moreover, that if t ∈ T is generic and P is a
∅-dimensional component of Xt then P is generic over ∅ and S /∈ acl(t). Then there
exists an M-definable family of plane curves X̃ → T such that for all t ∈ T :

1. Xt ∼ X̃t.

2. X̃t is pure-dimensional.

Our strategy is as follows. First, we show the existence of anM-definable family
of plane curves X → T satisfying all the technical assumptions of the previous
proposition. Fixing s ∈ T field generic and P ∈ X0

s our assumptions assure that any
generic independent t, u ∈ TP are, in fact, generic independent over ∅. Assuming,
as we may, that T isM-irreducible it follows that #(Xt ∩Xu) is independent of the

choice of t, u. Moreover, we show that #(Xt∩Xu) = #(X1
t ∩X1

u). Assuming towards
a contradiction that P /∈ aclM(s) we get immediately that #(Xt∩Xu) = #(Xt∩Xs),

implying – as P is isolated in Xs – that #(X1
t ∩ X1

u) > #(X1
t ∩ X1

s ). We then
apply basic intersection theory to show that, as t was arbitrary, this leads to a
contradiction.

We start by addressing the technical requirements Proposition 6.2. This will
require a few steps. The first result we need is well known to the experts, and goes
back to Hrushovski’s PhD thesis and Buechler’s works from the early 1980s (see e.g.,
[19, p.88]). As we were unable to find an explicit reference, we give a brief overview
of the proof:

Lemma 6.3. If M is a non-locally modular strongly minimal set there is no bound
on the dimension of definable families of plane curves.
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Proof. Clearly, if a field is interpretable inM then the lemma is true. It will suffice,
therefore, to prove that if Z is an n-dimensional (n ≥ 2) faithful family then either
dim(Z ◦ Z) > n or a field is interpretable in M.

Let S′ be a parameter set for the normalisation of Z ◦ Z. We prove that if
dimS′ = n then M interprets an infinite field. Our assumption implies that there
exists anM-definable finite-to-finite correspondence µ : S′ ` S. By definition, there
is also an M-definable function p : S × S → S′ (defined by the requirement that
Zt ◦ Zs is – up to a finite set – the curve defined by p(t, s)).

Let t, s be reduct generic independent elements of S and u ∈ µ(p(t, s)). Let x
be a reduct generic point of M , and y ∈ Zt(x), z ∈ Z−1

s (x). Construct the following
configuration:

y x

z

t

s

u

As y ∈ Zt ◦Zs(z) it follows that y is inter-M-algebraic with x over u, implying that
the above is, in fact, a group configuration. By Fact 5.11 there exists anM-definable
group G of dimension n acting definably on a definable set X of dimension 1. The
canonical base of tp(y, x/t) is inter-algebraic with t by faithfulness of the family Z,
and similarly for the canonical bases of tp(z, x/s) and tp(z, x, /u). Therefore by
Fact 5.12 the action of G on X is faithful. By Fact 5.13 there exists a field definable
in M.

In the discussion that follows canonical parameters (see Sub-section 2.2) will play
an important role. To simplify the discussion, we will denote, given a definable set
S, its canonical parameter [S]. As explained in the introduction [S] is not uniquely
determined, but acl([S]) is, which will suffice for our purposes. Formally, we have
to distinguish between M-canonical parameters and field-canonical parameters. In
practice, and in order to overload the notation, we will always use M-canonical
parameters (as long as the definable sets in questions are M-definable, of course).
Note, and this will be used implicitly throughout, that if X → T is a faithful ∅-
definable family (of plane curves) then t is a canonical parameter for Xt.

Now we turn to the genericity of isolated points (in the sense of the assumptions
of Proposition 6.2):

Lemma 6.4. Let S ⊆ M2 be an M-definable curve with [S] /∈ acl(∅). Let Z → T
be an M-irreducible n-dimensional M-definable faithful family of plane curves for
some n ≥ 2. Then there exists an M-definable family of plane curves Z ′ → T with
Z ′t ∼ Zt for all t ∈ T and such that for any t ∈ T generic over [S] any point in
(S ◦ Z ′t)0 is field generic.
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Proof. We may assume that S isM-irreducible (otherwise, repeat the argument for
eachM-component of S separately) and projecting dominantly on both coordinates.
We may also assume that there is no point P ∈ M2 incident to Zt for all generic t.
We may assume that if (p, q) ∈ S0 then p, q /∈ acl(∅), as if that is not the case we
can replace Z with Z \ ({p} ×M × T ∪M × {q} × T ).

Now note that if (p, q) ∈ S0 then p, q ∈ acl([S]). Thus, if t ∈ T is generic over
[S] then any point of the form (p, r), where (q, r) ∈ Zt, is generic over ∅. Indeed,
since q is generic over ∅ and t is generic over q any point (q, r) ∈ Zt is generic in Zt,
therefore generic over ∅.

If for some (p, q) ∈ Z0
t , say, p ∈ acl(∅) then, by genericity of t and the M-

irreducibility of Z → T , for all t′ ∈ T generic we have that (p, q′) ∈ Z0
t′ for some

q′. Similarly if q ∈ acl(0). Let {p1, . . . , pk} ⊆ acl(∅) such that (pi, q) ∈ Z0
t for some

q ∈M . Similarly, define {q1, . . . , qr}. Setting Z ′ → T by defining

Z ′ = Zt \
k⋃
i=1

{pi} ×M × T ∪
r⋃
i=1

M × {qi} × T

we may assume that for generic t ∈ T and any (p, q) ∈ Z0
t both p and q are generic

(not necessarily independent) over ∅.
Under these assumptions, if (p, q) ∈ Z0

t for t ∈ T generic over [S] then any point
(r, q) for r ∈ M such that (r, p) ∈ S is generic over ∅. Indeed, as [S] /∈ acl(∅) and
[S] is independent from t over ∅ (by symmetry) we get that r /∈ acl(p, q) and by
exchange q /∈ acl(r, p). So dim(p, q, r) = 3.

As (S ◦ Zt)0 ⊆ S0 ◦ Zt ∪ S ◦ Z0
t , the conclusion of the lemma follows.

We may now conclude:

Corollary 6.5. There exists an M-definable family of plane curves X → T satis-
fying the assumptions of Proposition 6.2.

Proof. Fix Z → T a faithfulM-definable family of plane curves of dimension at least
3, as provided by non local modularity. Fix a generic Zt0 in that family. By the
previous lemma, we can find Z ′ → T of the same dimension such that X := Zt0 ◦Z ′
has the desired properties.

Notation From now on we fix, once and for all, a family X → T satisfying the
assumptions of Proposition 6.2. We will assume that there is no P ∈M2 such that
P ∈ Xt for all generic t ∈ T .

Our aim is to use intersection theory in order to identify the isolated components
of Xt for t ∈ T generic. Our setting, however, only allows us direct access to
global intersection properties (such as the number of geometric intersection points
of two curves), and for such global phenomena the existence of isolated points,
frontier points and other local obstructions of similar flavour, may interfere with
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the geometric argument. We now turn to studying the nature of these possible
obstructions.

Definition 6.6. Let X → T be a definable family of plane curves, P ∈ M2 any
point. A point Q 6= P is P -indistinguishable (with respect to X) if TP ∼ TQ.
The point Q is frontier-P -indistinguishable (with respect to a field generic type p
extending X) if Q ∈ Fr(Xt) for all (field) generic t ∈ TP such that t |= p.

Note that for an M-definable family Y of plane curves the property of being
indistinguishable with respect to Y is M-definable, while the property of being
frontier indistinguishable is, a priori, only definable in the full Zariski structure on
M .

Remark. In the definition of frontier indistinguishable points (and in all further
references to frontier point in the present section) we have intentionally omitted
any clear reference to the topological space where this frontier is computed. In
the algebro-geometric context of the present text this has no importance. In other
contexts where one may consider generalising the results of this section the main
requirement to keep in mind is that the frontier of a plane curve be finite.

Lemma 6.7. Let X → T be as above. Let t, u ∈ T be field generic independent over
∅ (satisfying the same field-type over ∅). Then

Xt ∩Xu = ĎX1
t ∩ ĎX1

u \ C

Where C is the set of frontier P -indistinguishable points for some (equivalently, any)
P ∈ Xt ∩Xu.

Proof. Let P ∈ Xt ∩Xu be any point. By faithfulness of the family, P ∈ aclM(t, u).
Since u is independent of t over ∅ we immediately get that P is field generic in Xt

(otherwise P ∈ Xs for all generic s ∈ T , and by choice of X → T no such points exist)
and by symmetry P is also generic in Xu. Since P was arbitrary Xt∩Xs ⊆ ĎX1

t ∩ĎX1
u,

with the desired conclusion. More precisely,

2 dim(T ) = dim(P, t, u) = dim(u)+dim(P/u)+dim(t/P, u) = dim(T )+1+dim(t/P, u)

implying that u, t are independent generics in TP , so that – by definition of frontier
indistinguishable points – C ∩Xt ∩Xs = ∅.

In the above lemma we analysed the intersection of two generic independent
curves. In the application, however, our main concern will be in the situation where
s ∈ T is generic but Xu ∈ TP for some P ∈ X0

s . We prove:

Lemma 6.8. Let s ∈ T be generic, P ∈ X0
s and (t, u) ∈ TP×TP generic independent

from s over P . Then either P ∈ aclM(s) or #( ĎX1
t ∩ ĎX1

s ) < #( ĎX1
t ∩ ĎX1

u).
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Proof. We assume that s /∈ aclM(P ) (as we will see later on, this assumption will
ultimately lead to a contradiction). So P ∈ Xs is M-generic.

Claim I: tpM(s, t) = tpM(t, u).

Proof. To see this, note that, by assumption T is M-irreducible (i.e., has a unique
generic type). By the choice of X the point P is (field) generic (over ∅) and therefore
TP has a unique M-generic type p. Thus TP × TP has a unique M-generic type,
denoted p ⊗ p and by construction (t, u) |= p ⊗ p. It will now suffice to show that
(s, t) |= p ⊗ p. Indeed, as t is generic in TP over s this reduces to proving that
s |= p. Our assumption that P /∈ aclM(s) implies that dimM(P, s) = dimM(s) + 1.
So dimM(s/P ) = dimM(T ) − 1 = dimM(TP ). As p is the unique type in T p of
maximal dimension, the claim is proved.

Claim I

It follows that #(Xt ∩Xs) = #(Xt ∩Xu).
By definition both Xt ∩Xs and Xt ∩Xu contain all P -indistinguishable points.

By the previous lemma all P -indistinguishable points are, in fact, in ĎX1
t ∩ ĎX1

u so
there is no harm assuming that X0

s ∩ Xt = {P}, as any other point in that set is
P -indistinguishable (because X0

s is finite) and therefore will contribute to ĎX1
t ∩ ĎX1

u

but not to ĎX1
t ∩ ĎX1

s , making our task easier.
For exactly the same reason Fr(Xs)∩Xt contains only P -indistinguishable points.

But as s ∈ TP isM-generic (as follows from Claim I) all P -indistinguishable points
are, in fact, contained in Xs, so cannot be in Fr(Xs). Thus, Fr(Xs) ∩Xt = ∅.

Claim II: Let Q ∈ Xs ∩ acl(t) then Q ∈ acl(s).

Proof. First, observe that as dim(T ) > 2 and P is field generic over ∅ we get

dim{s′ ∈ S : P ∈ X0
s′} > 0,

i.e., s /∈ acl(P ). Let φ(x, t) isolate tp(Q/t). By compactness we may assume that
for any t′ ≡P t (in the full structure) the formula φ(x, t′) is algebraic. Consider

F := {Q′ : dim{t ∈ T p : Q′ |= φ(x, t)} ≥ dim(T )− 2}.

Then dim(F ) ≤ 1 and Q ∈ F . Therefore, as F is definable over P , we get that
F ∩Xs is finite, so Q ∈ acl(s). Claim II

It follows from the above claim that Xs ∩ X0
t = ∅. Indeed, the claim implies

that any Q ∈ Xs ∩ X0
t is algebraic over s, and therefore P -indistinguishable. But

the previous lemma all P -indistinguishable points are generic in Xt, so in particular
not in X0

t .
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Using the same claim again we see that if Q ∈ Xs ∩ Fr(Xt) then Q is frontier
P -indistinguishable. So we get that B := Xs ∩Fr(Xt) ⊆ C, where C is the set of all
frontier P -indistinguishable points (in the notation of the previous lemma).

Summing up all of the above, together with the previous lemma, we get:

#(Xt ∩Xs) = #(Xt ∩Xu).

But
#(Xt ∩Xs) = #( ĎX1

t ∩ ĎX1
s )− |B|+ 1

where P accounts for the extra point on the left hand side. On the other hand

#(Xt ∩Xu) = #( ĎX1
t ∩ ĎX1

u)− |C|

and as B ⊆ C the desired conclusion follows.

The previous lemma gives us the advantage of working with families of closed
curves, allowing us to use intersection theory. The fact that the family we will be
working with is (a priori) only definable in the full structure, and not necessarily in
M will not be of importance, as we will show that the conclusion of the previous
lemma leads to a contradiction, unless for generic s ∈ T and P ∈ X0

s we have that
P ∈ aclM(s).

6.2 Multiplicities

We remind that if X,Y ⊂M2 are curves and Q ∈ X ∩ Y is a regular point on both
then the intersection multiplicity of X and Y at P is defined

mult(X,Y ;P ) = dimkOM2,Q/IXIY

where IX and IY are the ideals cutting out the germs of X and Y around Q. If
Xa and Yb are fibres of families of curves over parameters a, b which are generic in
definable sets A,B, we regard them as curves over fields k(a), k(b) which are function
fields of locus(a), locus(b) respectively. We understand by intersection multiplicity
of Xa, Yb at a point P defined over acl(a, b)

mult(Xa, Yb;P ) = dimk(a,b)alg OM2,P /IXaIYb

where IXa , IYb are ideals that cut out the germs of Xa⊗k(a, b)alg and Y ⊗k(a, b)alg,
and k(a, b) is the function field of locus(a, b).

The key local property of the intersection multiplicity used further is given by
the following lemma:

Lemma 6.9. Let R be a regular local ring over a field k, and let I1, I2, I3 be three
ideals such that R/I1, R/I2, R/I3 are regular. Assume that R/(I1I2),R/(I2I3) and
R/(I1I3) are finite-dimensional k-vector spaces. Then

dimk R/(I1I2) ≥ min{dimk R/(I1I3), dimk R/(I2I3)}
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Proof. By symmetry of the statement it suffices to show that if

dimk R/(I1I2) ≥ dimk R/(I1I3),
dimk R/(I1I2) ≥ dimk R/(I2I3),

then dimk R/(I1I3) = dimk R/(I2I3).
By regularity ofR/I2, all 0-dimensional quotient algebras are of the form k[a]/(an)

for some generator; for two such algebras k[a]/(an), k[a]/(am), n > m there exists
a natural reduction morphism k[a]/(an) → k[a]/(am). It follows from the first in-
equality above that there exists a morphism of this form f : R/(I1I2)→ R/(I3I2) ∼=
R/I3 ⊗R/I2. We have the following diagram:

R/I2
//

p

��

R/I3 ⊗R/I2

id⊗p
��

R/(I1I2)
i12

//

f
55

R/I3 ⊗R/(I1I2)

h

OO

where h is defined by a⊗ b 7→ a · f(b).
One observes that both morphisms h and id⊗p are surjective, and since R/I3 ⊗

R/I2 and R/I3 ⊗ R/(I1I2) are finite-dimensional vector spaces, they are bijective
and so isomorphisms. By a similar argument, R/I3 ⊗ R/(I1I2) is isomorphic to
R/I3 ⊗R/I1, and therefore R/I3 ⊗R/I1 is isomorphic to R/I3 ⊗R/I2.

Geometrically, the above lemma expresses the fact that if X,Y and Z are
curves in M2 all meeting at a common point, Q, regular on all three, and if
mult(X,Y ;Q) = mult(X,Z;Q) then mult(Y,Z;Q) ≥ mult(X,Y ;Q).

Lemma 6.10. Let s be a generic point in T , P ∈ X0
s and t be a generic point in

TP . Let Q ∈ Xt∩Xs. Assume that all geometric intersection points (that is, defined
over acl(t, s)) are regular. Assume that all geometrically irreducible components of
TP are definable over s and let Y be the irreducible t belongs to. Then there exists
a number m such that for all t′, Q′ such that tp(s,Q) = tp(s,Q′) and t′ is generic
in Y , the intersection multiplicity of Xt′ and Xs at Q′ is m.

Proof. We first show the following: let W be an irreducible (over t, s) component of
Xt ∩Xs, then there exists a number m such that the multiplicity of intersection of
Xt and Xs at any geometric point in W is m.

In algebro-geometric terms we are looking at a regular point W on the scheme
Xt⊗k(t, s)∩Xs⊗k(t, s) with a residue field which is an algebraic extension of k(t, s).
The fiber product Z = Xt ×M2 Xs = SpecOM2,W /IXtIXs is then a spectrum of an
algebra of the form k(t, s)[ε]/(εm+1), since W is regular.

For any geometric point η : Spec k(t, s)alg → Z, since localization commutes with
base change, OM2,η/IXtIXs

∼= OM2,W /IXtIXs⊗k(t, s)alg. Therefore, the multiplicity
at η is dimk(t,s)alg OM2,W /IXtIXs ⊗ k(t, s)alg = dim Spec k(t, s)alg[ε]/(εm+1) = m.
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Now to prove the statement of the Lemma, observe that mult(Xt′ , Xs;Q
′) by

definition depends only on the type tp(t′, s,Q′), and for t′ is generic in an s-definable
set Y this type is determined by the type tp(s,Q′)

We can now show:

Lemma 6.11. Let s ∈ T be generic, P ∈ X0
s . Let Q ∈ Xs be generic over P

and t, u ∈ TP ∩ TQ independent generics. Assume that tp(t/P,Q) = tp(u/P,Q)
and tp(s) = tp(t) where all types are taken with respect to the full structure. Then
mult(Xt, Xs, Q) ≤ mult(Xu, Xt, Q).

Proof. By our choice of X → T we know that dim(P ) = 2 and as dim(T ) > 2 we get
dim(TP ) ≥ 2. Moreover, as in the proof of Claim II of Lemma 6.8, s /∈ acl(P ). This
implies that Q |̂ ∅ P , whence dim(TP ∩TQ) = dim(T )−2 ≥ 1. Thus, if t ∈ TP ∩TQ
is generic we have

dim(T ) + 2 = dim(t, P,Q) = dim(Q/t, P ) + dim(t/P ) + dim(P ).

Since dim(Q/t, P ) = 1 this implies that dim(t/P ) = dim(T ) − 1, so t is generic in
TP . Similarly, if t, u ∈ TP ∩ TQ we have:

2 dim(T ) = dim(P ) + dim(t, u/P ) + dim(Q/t, u, P )

and as Q ∈ acl(t, u, P ) this implies that dim(t, u/P ) = 2 dim(T ) − 2, i.e., (t, u) are
independent generics in TP . Since P is generic over ∅ this implies that t, u are
independent generic over ∅ as well.

Thus, mult(Xu, Xt, Q) is well defined (i.e., Q is regular on both curves). Assume
towards a contradiction that mult(Xs, Xt, Q) > mult(Xt, Xu, Q). By Lemma 6.10,
since tp(t/P,Q) = tp(u/P,Q), also mult(Xs, Xu, Q) = mult(Xs, Xt, Q), and so
mult(Xu, Xs, Q) > mult(Xt, Xu, Q). But by Lemma 6.9, mult(Xt, Xu, Q) ≥ mult(Xu, Xs, Q),
which constitutes a contradiction.

The global implication of the previous (local) lemma is:

Lemma 6.12. Let s ∈ T be generic P ∈ X0
s . Let t, u ∈ TP be independent generic

over all the data (satisfying the same type in the full structure). Then∑
Q∈ĚX1

s∩ĚX1
t

mult( ĎX1
s ,

ĎX1
t , Q) <

∑
Q∈ĚX1

u∩ĚX1
t

mult( ĎX1
u,

ĎX1
t , Q)

Proof. For simplicity we will assume that all curves in question have a unique 1-
dimensional component (with respect to the full structure). Otherwise we repeat
the argument component by component.

Denote Q := ĎX1
s ∩ ĎX1

t and Q1 the subset consisting of the points generic in X̄1
s .

Observe that if Q ∈ Q\Q1 then Q ∈ ĎX1
t′ for all tp(u/P, s) = tp(t/P, s), in particular,
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Q \ Q1 does not depend on the choice of t (only on its field-theoretic type). So by
Lemma 6.9 we get

mult( ĎX1
s ,

ĎX1
t , Q) ≤ mult( ĎX1

u,
ĎX1
t , Q).

Thus, ∑
Q∈Q\Q1

mult( ĎX1
s ,

ĎX1
t , Q) ≤

∑
Q∈Q\Q1

mult( ĎX1
u,

ĎX1
t , Q).

On the other hand, as we assumed thatXs andXt are irreducible, and – restricting to
an irreducible component of TP , we get by Lemma 6.10 that there exists a number m
such that whenever t ∈ TP is field generic (of a fixed type) mult( ĎX1

s ,
ĎX1
t , Q) = m for

anyQ ∈ ĎX1
s∩ĎX1

t generic inXs. Similarly, there exists n such that whenever t, u ∈ TP
are independent generics, satisfying the same field theoretic type mult( ĎX1

u,
ĎX1
t , Q) =

n for any Q ∈ ĎX1
s ∩ ĎX1

t generic in Xt.
By Lemma 6.11 we get m ≤ n. So the conclusion of the lemma would follow

if we showed that #Q1 is strictly smaller than the number of generic intersection
points in ĎX1

u ∩ ĎX1
t . But by Lemma 6.8 we know that

#( ĎX1
s ∩ ĎX1

t ) < #( ĎX1
u ∩ ĎX1

t )

and as we have just shown that the two sets share the same set Q\Q1 of non-generic
points, the desired conclusion follows.

Proof of Proposition 6.2. Fix a family X → T as provided by Corollary 6.5. If
for s ∈ T generic X0

s ⊆ aclM(s) then, by compactness (and induction on dim(T ))
we have nothing to prove. So assume that this is not the case. We will derive a
contradiction.

Let M∗ be a regular proper curve that contains M . Consider the first order
structure with the universe M∗ which contains the family X, interpreted as a subset
of (M∗)l for some l via the embedding M ↪→ M∗ that has been just picked. Note
that any definable subsets of M l in M∗ is definable in the original structureM, and
vice versa.

Let s ∈ T be field generic and P ∈ X0
s such that P /∈ aclM(s), Q ∈ S a field

generic point. Let t, u ∈ TP ∩ TQ be field independent generic over all the data. By
our assumption it follows from Lemma 6.8 that #( ĎX1

s ∩ ĎX1
t ) < #( ĎX1

u ∩ ĎX1
t ), where

the closure is taken in (some Cartesian power of) M∗.
As is well-known from intersection theory, intersection number of curves on

proper regular varieties is stable in algebraic families ([12], Section 10.2). There-
fore the sum of local intersection multiplicities over all intersection points should
be the same for pairs Xt, Xs and Xt, Xu. This is in direct contradiction with the
previous lemma.

Though Proposition 6.2 suffices for our needs in the current paper, we give the
proof of Theorem 6.1, whose statement is cleaner, and may be of interest on its own
right.
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Proof of Theorem 6.1. Let S be any M-definable curve. Absorbing the parameters
required to define S, we may assume that S is ∅-definable. Let X → T be any M-
definable family of plane curves satisfying the assumptions of Proposition 6.2. For
simplicity, we may also assume that X satisfies the conclusion of the proposition.
Consider the family S ◦ X → T . Our assumption implies that for a generic t ∈ T
the only isolated points of S ◦Xt are of the form S0 ◦ ĎX1

t (as ĎX1
t = ĎXt). Applying

Proposition 6.2 to S ◦Xt (for some generic t ∈ T ) we get a curve Zt ∼ S ◦Xt such
that Z0

t = ∅ (and Zt is definable over t). So S0 ⊆ {P ∈ S : P ◦Xt \ Zt 6= ∅}. Note
that the right hand side is t-definable (and finite). So

S0 :=
⋂

t∈T generic

{P ◦Xt \ Zt 6= ∅}

and by definabilty of Morley rank the right hand side is ∅-M-definable.

Note that the proof of Theorem 6.1 follows almost formally from Proposition
6.2, and has little to do with the topological definition of the set of 0-dimensional
components. The only property of 0-dimensional components used in the proof is
that if D has no 0-dimensional components then (S ◦D)0 ⊆ S0 ◦D.

Also the proof of Proposition 6.2 does not seem endemic to algebraic geometry.
The only algebro-geometric ingredients used in the proof are

1. Finiteness of the frontier of (plane) curves.

2. Lower semi-continuity of the intersection number in flat families.

3. The multiplicity inequality of Lemma 6.9

The last two of these three properties seem to have satisfactory analogues in
a variety of analytic and topological settings. E.g., the lower semi-continuity of
the intersection number in flat families may be replaced in certain contexts with
the invariance of the topological degree under homotopy (and see, e.g., [17, Lemma
4.19, Lemma 4.20]). The multiplicity inequality is a refinement of ideology that
tangency should be an equivalence relation. In many respect this is the cornerstone
upon which Zilber’s Trichotomy – suggesting the construction of a field from purely
geometric, even combinatorial, data – relies. It is therefore reasonable to expect to
have natural analogues in any context in which one can reasonably hope to prove
this trichotomy.

6.3 The main theorem

Theorem 6.13. Let M be an algebraic variety of dimension 1 defined over an
algebraically closed field k. Let X ⊂ T ×M2 be a family of constructible subsets of
M2 generically of dimension and Morley degree 1. Then the structure M = (M,X)
interprets an infinite field.
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Proof. By Lemma 6.8 and Proposition 6.2 there exists a two-dimensional family of
curves definable in (M,X) with generic fibre of pure dimension 1. By Theorem 5.23
a one-dimensional group G is definable in M. The structure induced on G by M
is non-locally modular, so the theorem is reduced to the case when there is a group
structure on M .

A non-locally modular strongly minimal group G has a definable set Z ⊂ G2

which is not a coset. Use it to produce the definition of a field by Theorem 5.33.
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